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Earth-Moon transfer with Sun-perturbation
                                   (4-body problem)

Hiten [Belbruno and Miller (1993)]

The Hiten transfer was established in the S-E-
M-S/C 4-body problem by considering the Sun-
perturbation and by employing the theory of 
Weak Stability Boundaries. 
                              [Belbruno and Miller (1993)]
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Backgrounds

Hohmann transfer (2-body problem)

The elliptic orbit connecting with the low Earth 
orbit and the lunar orbit. The two impulsive 
maneuver are required.
                                             [Bate et al. (1971)] E

M



3

  [Koon et al. (2001)]

  [Conley (1968)]

Coupled PRC3BS 

The S-E-M-S/C 4-body problem is approximated 
to coupled two PRC3BS (S-E-S/C and E-M-S/C 
systems), and then the transfer is constructed 
based on the tube dynamics in the coupled 
system.                                  [Koon et al. (2001)]
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LEO:

LLO:

169 [km], 7.087 [km/s]

100 [km], 1.633 [km/s]

Approach to a problem
・Use optimization algorithm for a patch point to construct a low energy
    transfer   [Peng et al. (2010)]

・Utilize the tubes (invariant manifolds) near the LEO and LLO to 
    obtain a low energy transfer 

∆VE

∆VM

∆VP

LLO

LEO

到着軌道 (E-M-S/C系 )

Patch point

S

E

M

出発軌道 (S-E-S/C系 )

Arrival trajectory 
(E-M-S/C system)

Departure trajectory 
(S-E-S/C system)
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ĒSE
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(x̄, ȳ, v̄
x

, v̄

y

) = (1� µS � r̄LEO, 0, 0,�v̄LEO)

Velocity : increase

Departure trajectory in the S-E-S/C system

Investigate the energy range
 (        range) such that an orbit 
is to be a non-transit orbit
�VE

＊maneuver  　  uniquely gives�VE ĒSE
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ĒSE
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D

max
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Family of the departure trajectories (non-transit orbits) 
parametrized by the energy
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Lunar orbit
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•We designed the transfer from the low Earth orbit (LEO) to the low lunar 
orbit (LLO) in the context of the coupled planar restricted 3-body 
system, namely, the Sun-Earth-spacecraft and Earth-Moon-spacecraft 
systems.

•We constructed the family of the departure trajectories (non-transit 
orbits) parametrized by the energy by investigating the tube near the 
Earth. On the other hand, the family of the arrival trajectories (transit 
orbits) was obtained.

•We chosen the patch point so that the families of the departure and 
arrival trajectories are intersected on set section, and then we designed 
the low energy LEO-LLO transfer. The patch point required the zero 
maneuver, and thus we optimized the maneuver in patching. Further, the 
total maneuver is 0.068 [km/s] fewer than the Hohmann transfer.
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Conclusions



17national geographic

Thanks for your attention !


