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In order to better understand the mechanisms that contribute to low back pain, researchers have developed mathematical
models and simulations. A mathematical model including neuromuscular feedback control is developed for a person
balancing on an unstable sitting apparatus, the wobble chair. When the application of a direct method fails to discover
appropriate controller gain parameters for the wobble chair, we show how topological equivalence can be used to indirectly
identify appropriate parameter values. The solution is found by first transforming the wobble chair into the Acrobot, another
member of the same family of topologically equivalent dynamical systems. After finding appropriate gain parameters for the
Acrobot, a continuous transformation is performed to convert the Acrobot back to the wobble chair, during which the gain
parameters are adjusted to maintain stability. Thus, we demonstrate how topological equivalence can be used to indirectly
solve a problem that was difficult to solve directly.
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1. Introduction

Low back pain (LBP) is a common medical condition that
affects most people sometime during their life (Kelsey and
White 1980; Reeves et al. 2005). In order to better
understand the mechanisms that contribute to LBP,
researchers have developed mathematical models and
simulations (Panjabi 1992; Granata and Wilson 2001;
Reeves and Cholewicki 2003; Franklin and Granata 2007;
Tanaka and Ross 2009; Tanaka et al. 2009, 2010; Ross
et al. 2010). These models generally consist of rigid body
segments, springs, dampers and actuators that represent
the spine, paraspinal tissue and muscles of the torso. In
addition, some models also include neuromuscular control
to simulate the system dynamics. Among the many types
of controllers that may be used to simulate the
neuromuscular control of the spine, one of the simplest
and most common is proportional derivative (PD) control
(Tan et al. 2002; Knospe 2006). PD control uses two
parameters, the proportional gain Gp and the derivative
gain Gd to quantify the control behaviour. However,
sometimes finding controller gain parameters that produce
stable behaviour is difficult when the system is nonlinear,
and the set of controller parameters leading to stable
behaviour is small.

The goal of this paper is to show how topological
equivalence can be used to find controller gain parameters
when the use of a direct method fails to yield results. In
order to demonstrate this, we will develop a mathematical
model of a person balancing on an unstable sitting

apparatus, the wobble chair (Cholewicki et al. 2000; Slota
et al. 2008; Tanaka et al. 2010). We will show how using a
direct approach to find PD control parameters to stabilise
the system was not successful (Figure 1). Next, we will
demonstrate how topological equivalence can be used to
transform the wobble chair into the Acrobot, another
member of the same family of topologically equivalent
dynamical systems. Controller gain parameters were found
for the Acrobot which produce stable system behaviour.
With a solution for the Acrobot known, a continuous
transformation will be performed to convert the Acrobot
back to the wobble chair. During this transformation, the
controller gain parameters will be adjusted to maintain
stable system behaviour throughout the transformation.
Finally, the space of controller parameters is divided into
regions leading to stability and instability for both the
Acrobot and the wobble chair through the application of the
evolution rule and the convergence rate of the Hilbert
envelope.

1.1 Topological equivalence

Topological equivalence is a mathematical concept that
may be used to characterise dynamical systems. Two
dynamical systems are said to be ‘topologically equival-
ent’ if the phase portraits are qualitatively similar (Meiss
2007). That is, one portrait can be obtained from the other
by a continuous transformation (Figure 2). In mathematics,
topological equivalence is a concept within the major area
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of topology, a field of study that is concerned with the
preservation of geometric properties of objects under
continuous deformation. Simply stated, if an object can be
stretched or deformed into another shape without tearing
it or gluing parts of it together, then these two objects
are topologically equivalent. The classic example is the
transformation of a doughnut into a coffee cup (Peterson
1998). Transformations are commonly used to classify
both the dynamical systems (e.g. equilibrium stability
types and normal forms) (Meiss 2007) and to make
seemingly difficult problems easier to solve. In the context
of a dynamical system, transformations can be thought of
as a change of phase space variables or a change of
parameters.

Although topological equivalence is not a new
concept, its application to biodynamics appears to be
uncommon. A few studies of legged locomotion have
used solutions of simpler approximate models as a starting
point for more complicated, realistic models (Geyer 2004;
Ghigliazza et al. 2005; Seipel 2005, 2006). Our contention
is that a more systematic approach of the use of
topological equivalence could lead to greater insight into
biodynamic problems as well as practical problem-solving
ability.

2. The planar double pendulum family

2.1 Mathematical model

The unstable sitting apparatus, also known as a wobble chair
(Figure 3(a)), is used to study the factors that contribute
to spinal instability and LBP (Tanaka and Granata 2007;
Lee and Granata 2008; Slota et al. 2008; Tanaka 2008).
The seat assembly pivots on a central low-friction ball joint
and moves with the lower body. Stabilising springs are
positioned to the front, back, left and right of the central ball
joint.Moving these springs closer to the centre decreases the
restorative moment applied to the seat, thereby increasing
task difficulty. During testing, the upper body moves with
respect to the lower body pivoting at the lumbar spine. Small
movements of the lumbar spine are used to maintain
balance. This system is simplified by collecting the upper
body components and lower body components to create two
rigid body segments (Tanaka et al. 2010).

This two-segment model of the wobble chair is a
member of the family of planar double inverted pendulums.
Members of the family may differ in mass, mass
distribution or segment lengths, but despite these
differences in inertial and geometric properties, they all
share the same topologically equivalent solutions to the
equations of motion. The property of having topologically
equivalent phase portraits is reflected in similarities of the
equations of motion. Using a Lagrangian approach, the
equation of motion for this family is

M €uþ Cðu; _uÞ _uþ GðuÞ ¼ t; ð1Þ

where u, _u and €u are the rotation angle, the angular velocity
and the angular acceleration vectors, respectively. The
matrices M, C and G are defined as

M ¼
m1 kc1k k2þm2 kL1

!! !!2þI1 m2 R0
u1
kL1

" #
· R0

u2kc2
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0
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" #
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5; ð4Þ

u ¼
u1

u2

" #

; ð5Þ

wheremi is the segment mass, kci is the vector from the joint
to the segment centre of mass, kLi is the segment position
vector, Ii is the segment moment of inertia, g is the
acceleration of gravity and ti is the external torque. The

Wobble Chair
Problem

Acrobot
Problem

Continuous

Transformation

Wobble Chair
Solution

Acrobot
Solution

Continuous

Transformation

Easier to
directly
solve the
Acrobot
Problem

Difficult to
solve the
wobble
chair
problem
directly

Figure 1. Flow map of paper showing how topological
equivalence is exploited using continuous transforms. A difficult
problem that cannot generally be solved directly is transformed to
an easier problem which is solved, and then transformed back to
obtain a solution to the original problem.

Figure 2. Topological equivalence. Notice that the phase
portrait of y can be created through a continuous deformation of x.
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subscript i indicates the segment number, 1 or 2.
Parameters R0

ui and R00
ui are the first and second time

derivatives of the rotation matrix,

Rui ¼
cos ui 2sin ui

sin ui cos ui

" #

: ð6Þ

The wobble chair is also part of a subset of this family
which has control, stiffness and damping between the two
segments and no control at the attachment point of the first
segment. For this subset,

t ¼
tSpr 2 tsk þ tsd þ CPDð Þ

tsk þ tsd þ CPD

" #

: ð7Þ

Compression springs (k1) at distance d1 are included in the
model (tSpr ¼ k1d

2 sin u1) as well as passive torques at
the lumbar spine due to elastic stiffness (k2: with tsk ¼
k2(u2 2 u1)) and viscous damping (k3: with
tsd ¼ k3( _u2 2 _u1)). PD control torque, CPD, is applied
between the two segments to represent the muscles of the
torso that flex or extend the spine. To achieve balance,
control torque is applied to cause flexion when the overall
centre of mass uCOM deviated to the posterior and
extension when uCOM deviated to the anterior. Thus, PD
control torque is

CPDðu; _uÞ ¼ Gd
_uCOM þ

GPuCOM; if juj , ucr;

tpmax; otherwise;

8
<

: ð8Þ

where

uCOM ¼ arctan
kcCOM†ĵ

kcCOM†î

$ %
; ð9Þ

kcCOM ¼ m1kc1 þ m2ðkL1 þ kc2Þ
m1 þ m2

; ð10Þ

Gd is the derivative gain constant, ucr ¼ tpmax/Gp is the
smallest angle at which the maximum gain is achieved, Gp

is the proportional gain constant and tpmax is the maximum
value of proportional torque.

2.2 Direct determination of stable control parameters

The Ziegler and Nichols (1942) method is used to manually
tune the control system parameters with the goal of
obtaining stable system behaviour. When this method is
applied, all gain parameters are set to zero and the
proportional gain increased until oscillations occur
(Atherton 2009). This value of proportional gain is
identified as the critical gain. The proportional gain is
reduced to half the critical gain value and the derivative gain
is then increased. Once generally stable performance is
achieved, the system is manually tuned to improve system
performance based on observed feedback. However, when
this trial and error method is applied to the wobble chair, no
stable behaviour is observed for any value of proportional
gain attempted. Due to the failure of this method to identify
stable gain parameters, an alternative method is attempted
as described in Section 3.

3. Continuous transformation between family
members

The Acrobot (Murray and Hauser 1991) is a two-segment
system which represents a person swinging on a high bar
(Figure 4) and its simplified model is a member of the
family of planar double pendulums. It is also within
the subset of this family that has actuation between the
segments, but not at the attachment to the fixed reference.
Notice the similarity between the Acrobot and the
simplified model of the wobble chair (Figure 3(b)). The
only differences are in the magnitudes of the inertial and
geometric parameters (Table 1). A key point is the

Figure 3. (a) Wobble chair and (b) simplified wobble chair model (Tanaka et al. 2010).
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following: it is advantageous to study this better known,
simpler and symmetric system in order to gain insight into
how to control the wobble chair, which is more
complicated and less symmetric, but part of the same
dynamical family.

Both the Acrobot and wobble chair are underactuated
systems, meaning they posses fewer actuation directions
than degrees of freedom (Spong 1995). Murray and Hauser
(1991) coined the term ‘Acrobot’ and were the first to
show that this underactuated system was controllable.

Since then, others have evaluated the dynamics of the
Acrobot (Spong 1995; Boone 1997) and similar dynamical
systems (Hou and Luecke 2003). The Acrobot is highly
nonlinear with strong coupling between segments. This
coupling was used by Spong (1995) to achieve a linear
response from the first segment through momentum
coupling with the second segment. This resulted in
exponential convergence of segment 1. However, the
movement of segment 2 was complex since its motion was
dictated by the dynamics required to generate the coupling
forces needed to control segment 1. Thus, segment 2 could
not be controlled for exponential convergence simul-
taneously with segment 1.

One important property of the Acrobot is the existence
of an equilibrium manifold (Murray and Hauser 1991).
The manifold exists when the combined centre of mass of
the two segments lies directly above the free swinging pin
joint. With an appropriate torque at the middle joint, this
configuration is able to achieve equilibrium where the two
angles, u1 and u2, are static. The existence of an
equilibrium manifold is significant because it indicates
that there is a continuum of equilibrium points which
exists along the length of the manifold. Thus, stability for
the Acrobot (and any member of its family within the
subset) may be achieved with more than one combination
of u1 and u2. By topological equivalence, there exists an
equilibrium manifold in the wobble chair as well, which
was previously unknown and unappreciated.

3.1 Finding stable control parameters for the
transformed system

The Ziegler and Nichols method is used to find a
proportional gain value which results in stable system
behaviour for the Acrobot. Unlike the case when this

Table 1. Model parameters.

Inertial parameters

Wobble chair Acrobot

m1 (kg) 27.4 8
m2 (kg) 31.8 8
I1 (kgm

2) 2.35 0
I2 (kgm

2) 4.86 0

Geometric parameters (m)

Wobble chair Acrobot

x y z x y z

L1 0.1272 0.1580 0 0 0.5 0
L2 0 0.7179 0 0 1.0 0
c1 20.1771 0.0780 0 0 0.5 0
c2 0 0.2736 0 0 1.0 0

Note: Acrobot parameters from Murray and Hauser (1991).

Figure 4. The Acrobot (acrobatic robot) is patterned after a
gymnast on a high bar. Actuation occurs only at the middle joint
(hip) with the first joint (hands) being free to spin about its axis.
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method was applied to the wobble chair, stable system
behaviour is found as the proportional gain is increased.
Derivative gain is added and the system is tuned for
adequate performance (Gp ¼ 3 £ 104Nm/rad and Gd ¼ 6
Nm/rad s). With these parameters, the controller is able to
drive uCOM from an initial angle of 18 of upright vertical to
within 0.18 with what appears to be exponential
convergence (Figure 5). We note that this convergence
will be quantified using the Hilbert envelope method
described below.

4. Transformation: Acrobot ! wobble chair

Beginning with the solution for the Acrobot, stable gain
parameters for the wobble chair are found by a gradual
transformation. This procedure exploits the fact that for
differential dynamical systems, the system solutions vary
smoothly and continuously (as opposed to discontinu-
ously) as the system parameters are changed (Meiss 2007).
Initially, keeping all other parameters the same, the masses
are increased in small steps from the Acrobot values to
the wobble chair values ðm1 ¼ 8! 27:4 kg;m2 ¼ 8!
31:8 kgÞ. At each step, the proportional and derivative
gains are adjusted based on observable system perform-
ance. Next, the moments of inertia are changed
(I1 ¼ 0 ! 2.35 kgm2; I2 ¼ 0 ! 4.86 kgm2) and the PD
parameters further refined. Finally, the segment and centre
of mass vectors are slowly changed.

In order to gradually transform the geometry, a
continuation variable, x, is defined. The variable, x, is used
to simultaneously control the magnitude of all geometric
parameters of the model including L1, L2, c1 and c2. For a
given value of x, the magnitude of L1 ¼ L1 Acrobot(x) þ
L1 WobbleChair(100%–x), where L1 Acrobot is the value of L1
for the Acrobot and L1 WobbleChair is the value of L1 for the

wobble chair. The other geometric parameters are
calculated similarly. During the transformation, the
segment vectors and centre of mass vectors (Table 1) are
x% Acrobot and (100–x)% wobble chair. Thus, by
changing the value of x, the model is linearly transformed
from one geometric state to the other. Some of the
intermediate configurations are shown in Figure 6. As the
system was slowly transformed, the controller gain
parameters were adjusted to maintain stable system
behaviour. After completing the transformation to the
family member of interest (wobble chair), convergent
behaviour is observed with Gp ¼ 6 £ 106Nm/rad and
Gd ¼ 200Nm/rad s (Figure 7).

5. Control parameter space partitioned into regions
of stability and instability

The previous analysis showed that stable PD gain
parameters could be found for both the Acrobot and the
wobble chair. However, we still do not understand why the
Acrobot is easier to solve than the wobble chair. In order to
investigate this, an analysis is conducted to test for
stability of these systems over a large range of
proportional and derivative gain parameters. A two-
dimensional representation of Gp vs. Gd makes up the
control space, CS ¼ {ðGp;GdÞ [ R2jGp [ ½0;1Þ;Gp [
½0;1Þ}. Two methods will be used to evaluate the stability
of the system for various combinations of Gp and Gd. The
first is the direct calculation of the trajectory using the
evolution rule (Bagnoli and Rechtman 1999; Jost 2005;
Kami and Ikeda 2009), and the second is the determination
of the expansion or contraction of oscillation magnitude
using the Hilbert envelope method (Bracewell 2000;
Schmid et al. 2004; Amoud et al. 2008). For both methods,
an initial condition of (u1, u2, _u1, _u2) ¼ (22.28, 1.88, 0, 0)
is used to begin each simulation. This initial condition is
near, but slightly off the equilibrium manifold. The
trajectory is tracked as it evolves under the influence of the
controller and the two methods will be used to evaluate if
the trajectory is stable or unstable for the given set of
control parameters in order to determine the control basin,
i.e. the region of control parameters leading to stability
(Thompson et al. 1990).

5.1 Calculating the control basin using the evolution
rule

Trajectories are calculated by applying the evolution rule
that maps the future state of the system based on the
current state. Stability is determined by determining if
trajectories remain within the neighbourhood of the
equilibrium manifold over a finite period of time (15 s).
Trajectories begin at the initial location in state space and
map out a trajectory as they evolve. Controller gain
parameters that produce trajectories which remain close to

Figure 5. Forward dynamic simulation of the Acrobot showed
that the selected PD controller gain parameters drove the centre
of mass to near equilibrium (Gp ¼ 3 £ 104 Nm/rad and
Gd ¼ 6Nm/rad s).
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the equilibrium manifold for the entire evolution time are
defined as stable trajectories, whereas those trajectories
that exit the neighbourhood are defined as unstable. For
this study, the neighbourhood is defined as being within
158 of the equilibrium manifold in configuration space.
Trajectories that exit this neighbourhood are stopped.

5.2 Calculating the control basin using the Hilbert
envelope

Stability of the system is also evaluated by determining
whether the amplitude of oscillations are increasing or
decreasing. The amplitude of the envelope of the
oscillating signal can be determined using a Hilbert
transform. Hilbert transforms have been used in electrical
communication (Gabor 1946; Wulich 1993), optics (Born
and Wolf 1959; Poon and Doh 2007), astronomy
(Bracewell 1985; Guillaume 2002) and electromyography
(Georgakis et al. 2003), as well as postural stability
(Schmid et al. 2004; Amoud et al. 2008). The Hilbert
transform of a real function f(t) is defined by Bracewell
(2000) as

hðtÞ ¼ 1

p

ð1

21

f ðtÞ
t2 t

dt; ð11Þ

where t is the time parameter over which the integration is
performed. The complex analytical signal is constructed

by combining the original signal with its Hilbert transform
placed in the imaginary plane,

zðtÞ ¼ f ðtÞ þ ihðtÞ: ð12Þ

This complex analytical signal may also be expressed as a
time-varying phasor,

zðtÞ ¼ aðtÞ eiuðtÞ; ð13Þ

Segment
2

Segment
1

Combined
COM

COM
segment 1

100% Acrobot
0% wobble chair

70% Acrobot
30% wobble chair

30% Acrobot
70% wobble chair

0% Acrobot
100% wobble chair

COM
segment 2

Free pin
joint

Continuation variable, x

Actuated
pin joint Wobble

chair
seat

Figure 6. Transformation of the Acrobot to the wobble chair. Increasing the continuation variable, x, causes the geometry to
continuously transform from the Acrobot to the wobble chair (four distinct cases are shown). The ground reference for the Acrobot and the
wobble chair is located at the tip of the pivot. For the Acrobot, this is the location of the high bar held by the gymnast, and for the wobble
chair it is where the central ball joint is attached to the seat.

Figure 7. Forward dynamic simulation of the wobble chair
showed that the selected PD controller gain parameters drove the
centre of mass towards equilibrium manifold ðGp ¼ 6 £ 106 Nm=
rad and Gd ¼ 200Nm/rad s).
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where aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðtÞ þ h2ðtÞ

p
is the phasor amplitude

and u(t) is the instantaneous phase (Amoud et al. 2008).
The parameter a(t) represents an envelope that
approximates the magnitude of the oscillations
(Figure 8). In order to determine whether the envelope
is converging or diverging, a(t) is fit to a line and the
slope is calculated. Positive slopes correlate with an
increase in oscillation magnitude indicating unstable
behaviour.

5.3 Map of the control basin

Using the above methods, control space is evaluated
over a large range ðGp ¼ ½0:3 £ 1010&; Gd ¼ ½0:3 £
105&Þ for the Acrobot (Figure 9(a)) and wobble chair
(Figure 9(c)) on a log–log plot of control space.
In addition, a 50% Acrobot–50% wobble chair morph is
shown (Figure 9(b)). Combinations of controller gain
parameters that result in unstable behaviour by both
methods are marked with a cross (Figure 8). Points in
control space that are identified as stable using the
evolution rule but not the Hilbert envelope method are
marked with a star. Control space locations that are
deemed stable by both methods are marked with a circle.
No points were found that were identified as stable using
the Hilbert envelope method and unstable using the
evolution rule.

The area of control space resulting in stable control
behaviour, i.e. the control basin, is observed to shift
upwards and to the right as the Acrobot is slowly
transformed into the wobble chair. Notice that for the
wobble chair, Gd ¼ 0 is not in the control basin (both
methods). This may explain why stable behaviour is not

observed for the wobble chair using the Ziegler and
Nichols method. However, when the system is transformed
and the method is applied, a solution is found because the
Acrobot control basin does contain Gd ¼ 0.

There are reasons why the two methods yield different
results. For small values of proportional and derivative
gain, the controller lacks enough power to stabilise the
system. This results in a rapid divergence since the
inherently unstable system is essentially not controlled.
Under these conditions, both methods indicate instability.
However, when the derivative gain is increased to
moderate or high levels, the high system damping causes
the system to move slowly away from equilibrium. For the
relatively short evaluation time of 15 s, the system is able
to remain close to the equilibrium point, resulting in a
stable assessment using the trajectory evolution method.
However, the system is moving away from the equilibrium
positions so the envelope is expanding. As a result, the
Hilbert envelope method indicates that the system is
unstable, a more accurate evaluation.

Stable behaviour is observed for moderate values of
proportional and derivative gain. The control basin is
observed to be a band from the lower middle moving
towards the upper right of control space. When
proportional gain is increased beyond this stable region,
the system again becomes unstable. This may be due to
high controller gains overdriving the system. The observed
behaviour was qualitatively similar to the underpowered
system with both exhibiting rapid divergence from
equilibrium. The similarity in observed behaviour for
the under-driven and over-driven systems further
supports why appropriate PD parameters were difficult
to find.

Figure 8. Hilbert transform envelope. (a) The analytical signal (bold line) creates an envelope containing the oscillations of uCOM (solid
line). The linear fit to the analytical signal (dashed line) shows a positive slope indicating unstable behaviour (Gp ¼ 2981Nm/rad and
Gd ¼ 20.1Nm/rad s). (b) At moderate values of proportional gain and adequate derivative gain, the analytical signal has a negative slope
indicating stable behaviour (Gp ¼ 22,026Nm/rad and Gd ¼ 7.39Nm/rad s).
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6. Conclusions

In this paper, we have shown how a direct approach to find
appropriate controller gain parameters for the wobble
chair was ineffective and, therefore, introduced an indirect

way to solve the problem using topological equivalence.
We showed the similarities between members of the same
family and how models could be easily transformed
between family members. Because these transformations
between family members are continuous and the solutions
are also continuous, we were able to demonstrate how a
solution for an unknown family member could be
obtained, given that a solution for one family member
was known. This approach allowed us to find appropriate
controller gain parameters for the wobble chair model.
This mathematical model which included PD feedback
control was used to evaluate torso stability and
approximate the size of its basin on stability (Tanaka
et al. 2010).

We also demonstrated how the slope of the Hilbert
envelope could be used to evaluate system stability. This
method was found to be more effective than the
application of the evolution rule which failed to recognise
that slowly diverging systems as unstable. Finally, we used
this method to find the regions of control space
corresponding to stable behaviour (i.e. the control basin)
and compared differences between two family members,
the wobble chair and the Acrobot.

Although these methods were applied to torso stability
analysis, they may also be useful for studying other types
of biodynamic system for which topology can be
generated. Possible applications include gait analysis,
standing postural sway, tumour growth, population models
and cellular signalling. Overall, we believe this approach
to be useful for a wide variety of applications where direct
solutions have not been successful.
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