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Experimental validation of phase space conduits of transition between potential wells
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A phase space boundary between transition and nontransition trajectories, similar to those observed in
Hamiltonian systems with rank-1 saddles, is verified experimentally in a macroscopic system. We present a
validation of the phase space flux across rank-1 saddles connecting adjacent potential wells, and we confirm
the underlying phase space conduits that mediate the transition. Experimental regions of transition are found to
agree with the theory to within 1%, suggesting the robustness of phase space conduits of transition in a broad
array of two or more degrees of freedom experimental systems, despite the presence of small dissipation.
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I. INTRODUCTION

Prediction of transition events and the determination of
governing criteria has significance in many physical, chem-
ical, and engineering systems where rank-1 saddles are
present. Some examples of such systems include ionization
of a hydrogen atom under an electromagnetic field in atomic
physics [1], transport of defects in solid-state and semiconduc-
tor physics [2], isomerization of clusters [3], reaction rates in
chemical physics [4,5], buckling modes in structural mechan-
ics [6,7], ship motion and capsize [8–10], escape and recap-
ture of comets and asteroids in celestial mechanics [11–13],
and escape into inflation or recollapse to singularity in cos-
mology [14]. The theoretical criteria of transition and its
agreement with laboratory experiment have been shown for
one degree-of-freedom (DOF) systems [15–17]. Detailed ex-
perimental validation of the geometrical framework for pre-
dicting transition in higher dimensional phase space (!4,
that is, for two or more DOF systems) is still lacking. The
geometric framework of phase space conduits in such sys-
tems, termed tube dynamics [11,12,18,19], has not been
demonstrated in a laboratory experiment. It is noted that
similar notions of transition were developed for idealized
microscopic systems, particularly chemical reactions [1,20–
22] under the terms of transition state and reactive island
theory. However, investigations of the predicted phase space
conduits of transition between wells in a multiwell system
have stayed within the confines of numerical simulations. In
this paper, we present a direct experimental validation of the
accuracy of the phase space conduits, as well as the transition
fraction obtained as a function of energy, in a four dimensional
phase space using a controlled laboratory experiment of a
macroscopic system.

In [23–25], experimental validation of global characteris-
tics of one DOF Hamiltonian dynamics of scalar transport has
been accomplished using direct measurement of the Poincaré
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stroboscopic sections using dye visualization of the fluid flow.
In [23,24], the experimental and computational results of
chaotic mixing were compared by measuring the observed
and simulated distribution of particles, thus confirming the
theory of chaotic transport in Hamiltonian systems for such
systems. Our objective is to validate theoretical predictions
of transition between potential wells in an exemplar exper-
imental 2 DOF system, where qualitatively different global
dynamics can occur. Our setup consists of a mass rolling
on a multiwell surface that is representative of potential
energy underlying systems that exhibit transition and escape
behavior. The archetypal potential energy surface chosen has
implications in transition, escape, and recapture phenomena
in many of the aforementioned physical systems. In some of
these systems, transition in the conservative case has been
understood in terms of trajectories of a given energy crossing
a hypersurface or transition state (bounded by a normally
hyperbolic invariant manifold of geometry S2N−3 in N DOF).
In this paper, for N = 2, trajectories pass inside a tubelike
separatrix, which has the advantage of accommodating the
inclusion of nonconservative forces such as stochasticity and
damping [7,10]. The semianalytical geometry-based approach
for identifying transition trajectories has also been considered
for periodically forced 2 DOF systems in [26,27]. Our analyti-
cal approach here focuses on identifying separatrices from the
unforced dynamics, and it generalizes to higher-dimensional
phase space [5,28]. Based on the illustrative nature of our
laboratory experiment of a 2 DOF mechanical system, and the
generality of the framework to higher degrees of freedom [19],
we envision that the geometric approach demonstrated here
can apply to experiments regarding transition across rank-1
saddles in three or more DOF systems in many physical
contexts.

II. SEPARATRICES in N DOF

To begin the mathematical description of the invariant
manifolds that partition the 2N -dimensional phase space, we
perform a linear transformation of the underlying conservative
Hamiltonian. This transformation involves a translation of the

2470-0045/2018/98(5)/052214(6) 052214-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.052214&domain=pdf&date_stamp=2018-11-15
https://doi.org/10.1103/PhysRevE.98.052214


ROSS, BOZORGMAGHAM, NAIK, AND VIRGIN PHYSICAL REVIEW E 98, 052214 (2018)

saddle equilibrium point to the origin and a linear change of
coordinates that uses the eigenvectors of the linear system.
The resulting Hamiltonian near the saddle has the quadratic
(normal) form

H2(q1, p1, . . . , qN , pN ) = λq1p1 +
N∑

k=2

ωk

2

(
q2

k + p2
k

)
, (1)

where N is the number of degrees of freedom, λ is the real
eigenvalue corresponding to the saddle coordinates (reactive
coordinates for chemical reactions) spanned by (q1, p1), and
ωk are the frequencies associated with the center coordinates
(bath coordinates for chemical reactions) spanned by the pair
(qk, pk ) for k ∈ 2, . . . , N .

Next, by fixing the energy level to h ∈ R+ and constant
c ∈ R+, we can define a codimension-1 region R ⊂ R2N in
the full phase space by the conditions

H2(q1, p2, . . . , qN , pN ) = h and |p1 − q1| ≤ c. (2)

This implies that R is homeomorphic to the product of a
(2N − 2) sphere and an interval I , that is, R ∼= S2N−2 × I ,
where the S2N−2 is given by

λ

4
(q1 + p1)2 +

N∑

k=2

ωk

2

(
q2

k + p2
k

)
= h + λ

4
(p1 − q1)2. (3)

The sphere of R at the middle of the equilibrium region,
where p1 − q1 = 0

N 2N−2
h =

{

(q, p)|λp2
1 +

N∑

k=2

ωk

2

(
q2

k + p2
k

)
= h

}

, (4)

corresponds to the transition state in chemical reactions (and
other systems with similar Hamiltonian structure [7,10,11]).

The following phase space structures and their geometry
are relevant for understanding transition across the saddle.

A. NHIM

The point q1 = p1 = 0 in the saddle projection corre-
sponds to an invariant (2N − 3) sphere, M2N−3

h , of periodic

and quasiperiodic orbits in R, and is given by

N∑

k=2

ωk

2

(
q2

k + p2
k

)
= h, q1 = p1 = 0. (5)

This is known as the normally hyperbolic invariant manifold
(NHIM), which has the property that the manifold has a
“saddlelike” stability in directions transverse to the mani-
fold, and initial conditions on this surface evolve on it for
t → ±∞. The role of unstable periodic orbits in the four-
dimensional phase space (or more generally the NHIM in the
2N -dimensional phase space) in transition between potential
wells is acting as an anchor for constructing the separatrices
of transit and nontransit trajectories.

B. Separatrix

The four half-open segments on the axes, q1p1 = 0, corre-
spond to four high-dimensional cylinders of orbits asymptotic
to this invariant S2N−3 either as time increases (p1 = 0) or
as time decreases (q1 = 0). These are called asymptotic orbits
and they form the stable and the unstable invariant manifolds
of S2N−3. The stable manifolds, W s

±(S2N−3), are given by

N∑

k=2

ωk

2

(
q2

k + p2
k

)
= h, q1 = 0, (6)

where ± denotes the left and right branches of the stable
manifold attached to the NHIM. Similarly, unstable manifolds
are constructed and are shown in the saddle space in Fig. 1 as
four orbits labeled M . These form the “spherical cylinders” of
orbits asymptotic to the invariant (2N − 3) sphere. Topolog-
ically, both invariant manifolds have the structure of (2N −
2)-dimensional “tubes” (S2N−3 × R) inside the (2N − 1)-
dimensional energy surface. Thus, they separate two distinct
types of motion: transit and nontransit trajectories. While a
transition trajectory, passing from one region to another, lies
inside the (2N − 2)-dimensional manifold, the nontransition
trajectories, bouncing back to their current region of motion,
are those outside the manifold.

For a value of the energy just above that of the saddle,
the nonlinear motion in the equilibrium region R is quali-
tatively the same as the linearized picture above [5,29,30].

FIG. 1. The flow in the region R can be separated into saddle × center × · · · × center. On the left, the saddle projection is shown on the
(q1, p1) plane. The NHIM (black dot at the origin), the asymptotic orbits on the stable and unstable manifolds (M), two transition trajectories
(T ), and two nontransition trajectories (NT).
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For example, the NHIM for the nonlinear system, which
corresponds to the (2N − 3) sphere in (5) for the linearized
system, is given by

M2N−3
h =

{

(q, p)|
N∑

k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, q1 = p1 = 0

}

,

(7)

where f is at least of third order. Here, (q2, p2, . . . , qN , pN )
are normal form coordinates and are related to the linearized
coordinates via a near-identity transformation. In the neigh-
borhood of the equilibrium point, since the higher-order terms
in f are negligible compared to the second-order terms, the
(2N − 3) sphere for the linear problem is a deformed sphere
for the nonlinear problem. Moreover, since the NHIMs persist
for higher energies, this deformed sphere M2N−3

h still has
stable and unstable invariant manifolds that are given by

WS
±
(
M2N−3

h

)
=

{

(q, p)|
N∑

k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, q1 = 0

}

,

Wu
±
(
M2N−3

h

)
=

{

(q, p)|
N∑

k=2

ωk

2

(
q2

k + p2
k

)

+ f (q2, p2, . . . , qn, pn) = h, p1 = 0

}

.

(8)

This geometric insight is useful for developing numerical
methods for globalization of the invariant manifolds using
numerical continuation [31].

Now, we briefly describe the techniques that can be used
to quantify and visualize the high-dimensional invariant man-
ifolds. For positive value of excess energy, one can use a
normal form computation to obtain higher-order terms of (7)
and (8). A brief overview of this approach is given in [32]
along with applications and results obtained using the com-
putational tool for the Hamiltonian normal form. Another
approach is to sample points on these manifolds since the
geometry of the manifold is known near the equilibrium point.
One would start by taking Poincaré sections and using normal
form theory that involves high-order expansions around a
saddle × center · · · × center equilibrium. For example, in 3
DOF, the NHIM has topology S3 and thus a tube cross section
on a 4D Poincaré section will have topology S3 for which it is
possible to obtain an inside and outside. If x = const defines
the Poincaré section, then one can project the S3 structure to
two transverse planes, (y, py ) and (z, pz). On each plane, the
projection appears as a disk, but because of the S3 topology,
any point in the (z, pz) projection corresponds to a topological
circle in the (y, py ) (and vice versa), and from this one can
determine which initial conditions are inside, and thus transit
trajectories, as has been performed previously [28,33].

(a) (b)

(c)

FIG. 2. (a) A typical experimental trajectory, shown in white, on
the potential energy surface where the contours denote isoheights of
the surface. This instance of the trajectory was traced by the ball
released from rest, marked by a red cross. Parts (b) and (c) show
the energetically accessible region projected on the configuration
space in white for !E < 0: !E = −100 (cm/s)2 and !E > 0:
!E = 100 (cm/s)2, respectively.

III. MODEL OF THE 2 DOF EXPERIMENTAL SYSTEM

The initial mathematical model of the transition behavior
of a rolling ball on the surface, H (x, y), shown in Fig. 5(b),
is described in [34]. The equations of motion are obtained
from the Hamiltonian, H(x, y, px, py ) = T (x, y, px, py ) +
V (x, y), where mass factors out and where the kinetic energy
(translational and rotational for a ball rolling without slipping)
is

T = 5
14

(
1 + H 2

y

)
p2

x +
(
1 + H 2

x

)
p2

y − 2HxHypxpy

1 + H 2
x + H 2

y

, (9)

where H(·) = ∂H
∂ (·) . The potential energy is V (x, y) =

gH (x, y), where g = 981 cm/s2 is the gravitational accelera-
tion, and the height function is

H = α(x2 + y2) − β(
√

x2 + γ +
√

y2 + γ ) − ξxy + H0.

(10)

This is the analytical function for the machined sur-
face shown in Fig. 5(b) and the isoheights shown
in Fig. 2(a). We use parameter values (α,β, γ , ξ,H0) =
(0.07, 1.017, 15.103, 0.006 56, 12.065) in the appropriate
units [31].

Let M(E) be the energy manifold in the 4D phase
space given by setting the total energy equal to a constant,
E, i.e., M(E) = {(x, y, px, py ) ⊂ R4 | H(x, y, px, py ) =
E}. The projection of the energy manifold onto the (x, y)
configuration space is the region of energetically possible
motion for a mass with energy E, and is given by M (E) =
{(x, y) | V (x, y) " E}. The boundary of M (E) is the zero
velocity curve and is defined as the locus of points in the (x, y)
plane where the kinetic energy is zero. The mass is only able
to move on the side of the curve where the kinetic energy is
positive, shown as white regions in Figs. 2(b) and 2(c). The
critical energy for transition, Ee, is the energy of the rank-1
saddle points in each bottleneck, which are all equal. This
energy divides the global behavior of the mass into two cases,
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transition tube from quadrant 1 to 2 periodic orbit for excess energy, ∆E
(a)

(b) W s
1−2,U1

FIG. 3. (a) For a fixed excess energy, !E, above the critical
value Ee, the permissible regions (in white) are connected by a
bottleneck around the saddle equilibria. All motion from the well in
quadrant 1 to quadrant 2 must occur through the interior of a stable
manifold associated with an unstable periodic orbit in the bottleneck
between the quadrants, seen as a 2D configuration space projection of
the 3D energy manifold. We show the stable manifold (cyan) and the
periodic orbit (black) for an excess energy of !E = 100 (cm/s)2.
A trajectory crossing the U−

1 section inside the stable manifold will
transition (red) into the quadrant 2 well, while one that is outside
(blue) stays inside quadrant 1. The zoomed-in inset in the figure
shows the structure of the manifold and how precisely the separatrix
divides transition and nontransition trajectories. (b) In the (x, y, vy )
projection, the phase space conduit for imminent transition from
quadrant 1 to 2 is the stable manifold (cyan) of geometry R1 × S1

(i.e., a cylinder). The same example trajectories (red and blue) as in
(a) that exhibit transition and nontransition behavior starting inside
and outside the stable manifold, respectively, are shown in the 3D
projection and projected on the (x, y) configuration space. A movie
of a nested sequence of these manifolds can be found at Ref. [35].

according to the sign of the excess energy above the saddle,
!E = E − Ee:

Case 1. !E < 0—the mass is safe against transition and
remains inside the starting well since potential wells are not
energetically connected [Fig. 2(b)].

Case 2. !E > 0—the mass can transition by crossing the
bottlenecks that open up around the saddle points, permitting
transition between the potential wells [Figs. 2(c) and Fig. 3(a)
show this case].

Thus, transition between wells can occur when
!E > 0, and this constitutes a necessary condition. The
sufficient condition for transition to occur is when a trajectory
enters a codimension-1 invariant manifold associated with
the unstable periodic orbit in the bottleneck as shown by
nontransition and transition trajectories in Fig. 3(a) [18]. In
2 DOF systems, the periodic orbit residing in the bottleneck
has an invariant manifold that is codimension-1 in the energy
manifold and has topology R1 × S1, which is a cylinder or
tube [31]. This implies that the transverse intersection of these
manifolds with Poincaré surfaces-of-sections, U1 and U2, is
topologically S1, a closed curve [7,10,18]. All the trajectories
transitioning to a different potential well (or having just
transitioned into the well) are inside a tube manifold, for
example as shown in Fig. 3(b) [18,19]. For every !E > 0,
the tubes in phase space [or more precisely, within M(E)]
that lead to transition are the stable (and that lead to entry are
the unstable) manifolds associated with the unstable periodic
orbit of energy E. Thus, the mass’s imminent transition

(a) (b)

FIG. 4. Poincaré section, P − : U−
1 → U−

1 , of trajectories where
U−

1 := {(r, pr )| θ = π/4, pθ > 0}, at excess energy (a) !E =
100 (cm/s)2 and (b) !E = 500 (cm/s)2. The blue curves with a
cyan interior denote the intersection of the tube manifold (stable)
associated with the unstable periodic orbit with U−

1 . It should be
noted that these manifolds act as a boundary between transition and
nontransition trajectories, and may include KAM tori spanning more
than one well. The interior of the manifolds, int(·), denotes the region
of imminent transition to the quadrant 2 from quadrant 1. A movie
showing the Poincaré section for a range of excess energy can be
found at Ref. [36].

between adjacent wells can be predicted by considering where
it crosses U1, as shown in Fig. 4, relative to the intersection
of the tube manifold. Furthermore, nested energy manifolds
have corresponding nested stable and unstable manifolds that
mediate transition. To simplify analysis, we focus only on the
transition of trajectories that intersect U1 in the first quadrant.
This surface-of-section is best described in polar coordinates
(r, θ, pr , pθ ); U±

1 = {(r, pr ) | θ = π
4 , − sgn(pθ ) = ±1},

where + and − denote motion to the right and left of the
section, respectively [31]. This Hamiltonian flow on U±

1
defines a symplectic map with typical features such as KAM
tori and chaotic regions, shown in Fig. 4 for two values of
excess energy.

Based on these phase space conduits that lead to transition,
we would like to calculate what fraction of the energetically
permissible trajectories will transition from or into a given
well. This can be answered in part by calculating the transition
rate of trajectories crossing the rank-1 saddle in the bottleneck
connecting the wells. For computing this rate—surface inte-
gral of trajectories crossing a bounded surface per unit time—
we use the geometry of the tube manifold cross section on the
Poincaré section. For low excess energy, this computation is
based on the theory of flux over a rank-1 saddle [37], which
corresponds to the action integral around the periodic orbit at
energy !E. By the Poincaré integral invariant [38], this action
is preserved for symplectic maps, such as P ± : U±

1 → U±
1 ,

and is equivalent to computing the area of the tube manifold’s
intersection with the surface-of-section. The transition frac-
tion at each energy, ptrans(!E), is calculated by the fraction of
energetically permissible trajectories at a given excess energy,
!E, that will transition. This is given by the ratio of the cross
sections on U1 of the tube to the energy surface. The transition
area, to leading order in !E [37], is given by Atrans = Tpo!E,
where Tpo = 2π/ω is the period of the periodic orbits of small
energy in the bottleneck, where ω is the imaginary part of
the complex-conjugate pair of eigenvalues resulting from the
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(a) (b)

FIG. 5. (a), (b) Experimental apparatus showing the machined
surface, tracking camera, and the rubber coated steel ball.

linearization about the saddle equilibrium point [37]. The area
of the energy surface projection on U1, to leading order in
!E > 0, is AE = A0 + τ!E, where

A0 = 2
∫ rmax

rmin

√
14
5

[Ee − gH (r )]
[
1 + 4H 2

r (r )
]

dr (11)

and τ =
∫ rmax

rmin

√
14
5

[
1 + 4H 2

r (r )
]

[Ee − gH (r )]
dr. (12)

The transition fraction, under the well-mixed assumption
mentioned earlier, is given in 2 DOF by

ptrans = Atrans

AE

=
Tpo

A0
!E

(
1 − τ

A0
!E + O(!E2)

)
. (13)

For small positive excess energy, the predicted growth rate is
Tpo/A0 ≈0.87 × 10−3 (s/cm)2. For larger values of !E, the
cross-sectional areas are computed numerically using Green’s
theorem; see Fig. 6(b).

As with any physical experiment, there is dissipation
present, but over the timescale of interest, the motion ap-
proximately conserves energy. We compare δE, the typical
energy lost during a transition, with the typical excess energy,
!E > 0, when transitions are possible. The timescale of in-
terest, ttrans, corresponds to the time between crossing U1 and
transitioning across the saddle into a neighboring well. The
energy loss over ttrans in terms of the measured damping ratio
ζ ≈0.025 is δE ≈πζv2(!E), where the squared-velocity
v2(!E) is approximated through the total energy. For our
experimental trajectories, all starting at !E > 1000 (cm/s)2,
we find δE/!E ≪ 1, suggesting the appropriateness of the
assumption of short-time conservative dynamics to study tran-
sition between wells [7,10].

IV. EXPERIMENTAL SETUP

We designed a surface that has four wells, one in each
quadrant, with saddles connecting the neighboring quadrants
[shown in Fig. 5(b)]. The surface has four stable and five
saddle (four rank-1 and one rank-2) equilibrium points. Inter-
well first-order transitions are defined as crossing the rank-1
saddles between the wells. On this high-precision machined
surface, accurate to within 0.003 mm and made using stock
polycarbonate, a small rubber-coated spherical steel mass
released from rest can roll without slipping under the influence
of gravity. The mass is released from different locations on
the machined surface to generate experimental trajectories.

12 16
-80

-40

0

40

80

0 4 8

[40, 140]

FIG. 6. (a) On the Poincaré section, U−
1 , we show a narrow

range of energy [!E ∈ (40, 140) (cm/s)2] and label intersecting
trajectories as no transition (black) and imminent transition (red) to
quadrant 2, based on their measured behavior. The stable invariant
manifold associated with the bottleneck periodic orbit at excess
energy, !E = 140 (cm/s)2, intersects the Poincaré section, U−

1 ,
along the blue curve. Its interior is shown in cyan and includes the ex-
perimental transition trajectories. The outer closed curve (magenta)
is the intersection of the boundary of the energy surface M(!E)
with U−

1 . (b) Transition fraction of trajectories as a function of
excess energy above the saddle. The theoretical result is shown (blue
curve) and experimental values are shown as filled circles (black)
with error bars. For small excess energy above critical (!E = 0),
the transition fraction shows linear growth (see inset) with slope
1.0 ± 0.23 × 10−3 (s/cm)2 and shows agreement with the analytical
result (13). A movie of increasing transition area on the Poincaré
section, U−

1 , can be found at Ref. [39].

The mass is tracked using a Prosilica GC640 digital camera
mounted on a rigid frame attached to the surface as shown
in Fig. 5(a), with a pixel resolution of about 0.16 cm. The
tracking is done by capturing black and white images at 50
Hz, and calculating the coordinates of the mass’s geometrical
center. We recorded 120 experimental trajectories of about 10
s long, only using data after waiting at least the Lyapunov time
of ≈0.4 s [34] ensuring that the trajectories were well-mixed
in the phase space. To analyze the fraction of trajectories
that leave or enter a well, we obtain approximately 4000
intersections with a Poincaré surface-of-section, U1, shown
as a black line, for the analyzed range of energy. One such
trajectory is shown in white in Fig. 2(a). These intersections
are then sorted according to energy. The intersection points
on U1 are classified as a transition from quadrant 1 to 2 if the
trajectory, followed forward in time, leaves quadrant 1. A total
of 400 transition events were recorded.

V. RESULTS

For each of the recorded trajectories, we detect intersec-
tions with U1 and determine the instantaneous !E. Grouping
intersection points by energy [e.g., Fig. 6(a)], we get an
experimental transition fraction, Fig. 6(b), by dividing points
that transitioned by the total in each energy range. Despite the
experimental uncertainty from the image analysis, agreement
between observed and predicted values is satisfactory. In fact,
a linear fit of the experimental results for small excess energy
gives a slope close to that predicted by (13) within the margin
of error. Furthermore, the clustering of observed transitioning
trajectories in each energy range, as in Fig. 6(a), is consistent
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with the theory of tube dynamics. The predicted transition
regions in each energy range account for more than 99% of
the observed transition trajectories.

VI. CONCLUSIONS

We considered a macroscopic 2 DOF experimental sys-
tem showing transitions between potential wells and a dy-
namical systems theory of the conduits that mediate those
transitions [7,10,18]. The experimental validation presented
here confirms the robustness of the conduits between multi-
stable regions, even in the presence of nonconservative forces,
providing a strong footing for predicting transitions in a

wide range of physical systems. Given the fragility of other
structures to dissipation (for example, KAM tori and periodic
orbits), these phase space conduits of transition may be among
the most robust features to be found in experiments of au-
tonomous multiple DOF systems. Furthermore, this study lays
the groundwork for experimental validation for an N = 3 or
more DOF system, such as ship dynamics [8–10,40], buckling
of beams [7] and geodesic lattice domes, hanging roller pins,
isomerization, and roaming reactions [41,42].
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1 Equations of motion

Let us consider a ball is rolling on a smooth surface described by the analytical function

H(x, y) = a(x
2 + y

2)� b

✓q
x2 + g +

q
y2 + g

◆
� xxy + H0 (1)

where a = 0.07, b = 1.017, g = 15.103, x = 0.00656 are constant parameters in appropriate units, and H0 =
12.065 cm, g = 981 cm/s2. The height of the ball, z, is restricted to the surface, z = H(x, y), at the configuration
space coordinates, (x, y). Thus

dz

dt
=ẋHx + ẏHy, where Hx =

∂H

∂x
, Hy =

∂H

∂y
(2)

The translational and rotational energy for a ball is given by
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(4)

The total kinetic energy is a combination of translational and rotational kinetic energy for a ball rolling without
slipping, and is given by

T(x, y, ẋ, ẏ) = Ekinetic =Etrans + Erot =
1
2
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1
2

m


ẋ
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(5)

The potential energy is given by

V(x, y) =Epotential = mgz = mgH(x, y)

V(x, y) =mg

✓
a(x

2 + y
2)� b
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q
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.

(6)

The Lagrangian is given by

L(x, y, vx, vy) =T(x, y, vx, vy)� V(x, y)

=
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where we have substituted vx = ẋ and vy = ẏ. In absence of non-conservative forces such as damping or
external forcing, Lagrange’s equations of motion gives

v̇x(1 + H
2
x) + v̇y Hx Hy =� Hx


5
7

g + Hxxv
2
x + 2Hxyvxvy + Hyyv

2
y

�
(8)

v̇y(1 + H
2
y) + v̇x Hx Hy =� Hy


5
7

g + Hxxv
2
x + 2Hxyvxvy + Hyyv

2
y

�
(9)

where the phase space is X = (x, y, vx, vy) 2 R4, Hx = ∂H

∂x
, Hy = ∂H

∂y
, etc. In the first order form, we have

ẋ = vx

ẏ = vy

v̇x =� hHx

v̇y =� hHy

(10)

where

h ⌘ h(x, y, vx, vy) =
5
7 g + Hxxv

2
x + 2Hxyvxvy + Hyyv

2
y

1 + H2
x + H2

y

(11)

Symmetries.— We note that the equations of motion (10) have the following discrete symmetry

s0 :(x, y, vx, vy, t) ! (�x,�y,�vx,�vy, t) that is, reflection about the origin, (12)
sr :(x, y, vx, vy, t) ! (y, x, vy, vx, t) that is, reflection about the y = x line. (13)

So if (x(t), y(t), vx(t), vy(t)) is a solution to (10), then (�x(t),�y(t),�vx(t),�vy(t)) is another solution, and
if (x(t), y(t), vx(t), vy(t)) is a solution to (10), then (y(t), x(t), vy(t), vx(t)) is another solution. These two
symmetries, (12) and (13), can be composed to give a third symmetry, where the order of composition does
not matter (s0 � sr = sr � s0)

s0 � sr : (x, y, vx, vy, t) ! (�y,�x,�vy,�vx, t) (14)

This symmetry corresponds to reflection about the y = �x line. For the conservative dynamics, the equations
of motion (10) also admit a time-reversal symmetry,

st : (x, y, vx, vy, t) ! (x, y, vx, vt,�t) (15)

Similar proposition about the solution and composition of symmetry also holds.

The corresponding Hamiltonian for the Lagrangian can be obtained via the usual Legendre transformation.
Thus, the Hamiltonian is given by

H(x, y, px, py) = T(x, y, px, py) + V(x, y) =
1
2

pTM�1(r)p + V(x, y) (16)

where the generalized momenta p = (px, py) are

p =Mṙ (17)
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py

�
=

7
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where ṙ = (ẋ, ẏ) and

M�1(r) =
5
7
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y
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y) �Hx Hy
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(19)

So, the Hamiltonian is

H(x, y, px, py) =
1
2

5
7
(1 + H

2
y)p

2
x + (1 + H

2
x)p

2
y � 2Hx Hy px py

1 + H2
x + H2

y

+ V(x, y) (20)

Energy surface.— The solutions of Eqn. (10), that is the dynamics in absence of non-conservative forces, conserve
the (Jacobi constant) energy, which since the kinetic energy is quadratic in the velocities is simply the sum of
kinetic energy and potential energy

E(r, v) =
1
2

vTM(r)v + V(r) (21)
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1
2

7
5
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2
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2
y + 2Hx Hyvxvy

⌘
+ V(x, y) (22)
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Figure S1: Hill’s region for excess energy, DE = 100 (cm/s)2. The energetically accessible region is shown in
white, and the surfaces-of-sections are marked with arrow pointing in the direction of motion that a trajectory
is recorded when crossing the surface.

Let M be the energy manifold or energy surface given by setting the energy integral (22) equal to a constant, that
is

M(E) =
�
(x, y, vx, vy)|E(x, y, vx, vy) = E

 
(23)

where E is a constant. For a fixed total energy, E, the surface M(E) is a three-dimensional surface embedded
in the four-dimensional phase space.

Hill’s Region.— The projection of the energy surface onto configuration space, the (x, y) plane, is the region of
energetically possible motion for a ball of energy, E. Let M(E) denote this projection, 1

M(E) = {(x, y)|V(x, y) 6 E} , (24)

and is known historically in mechanics, as the Hill’s region. The boundary of M(E) is known as the zero velocity

curve, and plays an important role in placing bounds on the motion of the ball. A consequence of the st

symmetry is that any trajectory which touches the zero velocity curve (those corresponding to V(x, y) = E),
that is the outer boundary of the energetically permissible, white region, at time t0 must retrace its path in
configuration space, q = (x, y),

q(�t + t0) =q(t + t0) (25)
q̇(�t + t0) =� q̇(t + t0) (26)

Surface-of-section.— We define four topologically distinct Poincaré surfaces-of-sections as

U
±
1 ={(x, vx) | y � x = 0, y > 0, �sign(vy � vx) = ±1} (27)

U
±
2 ={(x, vx) | y + x = 0, y > 0, sign(vy + vx) = ±1} (28)

where U1 and U2 are in quadrant 1 and quadrant 2 of the (x, y) plane, while + and � denote motion to the
right and left, respectively. A simple algebraic manipulation yields the condition that motion to the right is
vy < vx and motion to the left is vx < vy. Furthermore, we note that the function H(x, y) has two discrete
symmetries: it is symmetric about the origin, H(�x,�y) = H(x, y), and with respect to the reflection about
the y = x or 45 deg line, H(y, x) = H(x, y). Due to the symmetry of this rolling surface, H(x, y), motion in the
quadrant 1 and quadrant 2 is equivalent to the motion in the quadrant 3 and quadrant 4, respectively. We use
this symmetry to increase the transition data in experiment, and to reduce the numerical computation.

1Note that our convention is to use script letters for a region in the energy surface (including the energy surface itself, M) and italicized
capital letters for that region’s projection onto the configuration space (e.g., M)
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2 Transition fraction

Change of Coordinates.— To simplify the expressions and analysis, we introduce polar coordinates (r, q) via the
transformation

x = r cos q

y = r sin q
(29)

and thus
ẋ = ṙ cos q � rq̇ sin q

ẏ = ṙ sin q + rq̇ cos q
(30)

or


vx

vy

�
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� 
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�
(31)

So the kinetic energy can be expressed as
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So, the conjugate momenta p̃ = (pr, pq) is given by
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On the Poincaré surface-of-section, U1, q = p/4, so cos q = 1/
p

2 and sin q = 1/
p

2. Thus, on this section, we
have
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x) + vy Hx Hy

vx Hx Hy + vy(1 + H
2
y)

�
(38)

=
7
5

1p
2

"
vx(1 + H

2
x) + vy Hx Hy + vx Hx Hy + vy(1 + H

2
y)

�r

n
vx(1 + H

2
x) + vy Hx Hy � vx Hx Hy � vy(1 + H

2
y)
o
#

(39)

Now, on the Poincaré surface-of-section, U1, y = x, y > 0, and r =
p

2y, and thus

H(x, y)|U1 =H(y, y) = 2ay
2 � 2b

q
y2 + g � xy

2 + H0 (40)

Hx(x, y)|U1 =Hy(x, y)|U1 = Hy(y, y) = 4ay � 2b
yp

y2 + g
� 2xy (41)

Hr(r) =2ar � b
rq

r2
2 + g

� xr = 2
p

2ay � b

p
2yp

y2 + g
�
p

2xy (42)

Hr(r) =
Hyp

2
=

Hxp
2

(43)

On the Poincaré surface-of-section, U1, the conjugate momenta is given by


pr

pq

�
=

7
5

1p
2

"
vx(1 + H

2
x) + vy Hx Hy + vx Hx Hy + vy(1 + H

2
y)

�r

n
vx(1 + H

2
x) + vy Hx Hy � vx Hx Hy � vy(1 + H

2
y)
o
#

(44)

=
7
5

1p
2


(vx + vy)(1 + 4H

2
r )

�r(vx � vy)

�
(45)
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This can be solved to express vx, vy as

vx =
5
7

1p
2

✓
pr

(1 + 4H2
r )

� pq

r

◆
(46)

vy =
5
7

1p
2

✓
pr

(1 + 4H2
r )

+
pq

r

◆
(47)

In polar coordinates, the condition
�sign(vy � vx) = ±1 (48)

gives, using Eqns. 46 and 47,

�sign


5
7

1p
2

✓
pr

(1 + 4H2
r )

+
pq

r

◆
� 5

7
1p
2

✓
pr

(1 + 4H2
r )

� pq

r

◆�
= ±1 (49)

which simplifies to
�sign (pq) = ±1 (50)

Similarly, we can obtain the condition for the surface-of-section, U2. Thus, in polar coordinates, we have
Poincaré surface-of-sections

U
±
1 ={(r, pr) | q = p/4, �sign(pq) = ±1} (51)

(a) (b) (c) (d)

Figure S2: Poincaré surface-of-section of trajectories at energy above the critical value of Ee = 3304.24 (cm/s)2.
The global dynamics has characteristics of chaos while trajectories transition between wells and cross the
surface-of-section, U

�
1 . A movie (same as Fig. 3 in the primary manuscript) showing the Poincaré section for

a range of excess energy can be found here.

Using the above transformations, we obtain the solutions of Eqn. 10 in cartesian coordinates and transform it
to polar coordinate for further analysis. These closed curves on the Poincaré section has been called reactive

islands in the context of chemical reactions since trajectories that enter these islands evolve from the “reactant”
to “product” side on the energy surface [2, 3, 4, 5, 16]. We also note that the total energy, on the Poincaré SOS
U1, is given by

E(x, y, vx, vy) =
1
2

7
5

h⇣
1 + H

2
x

⌘ ⇣
v

2
x + v

2
y

⌘
+ 2H

2
xvxvy

i
+ gH(x, y) (52)

E(r, pr, pq) =
1
2

5
7

"
p

2
r

(1 + 4H2
r )

+
p

2
q

r2

#
+ gH(r) (53)

and the boundary of the energy surface E = E on U1 is given by pq = 0, so

pr = ±
r

14
5
(E � gH(r))(1 + 4H2

r ) (54)

so the symplectic area of the energy surface on the SOS U1 is

AE = 2
rmaxZ

rmin

r
14
5
(E � gH(r))(1 + 4H2

r ) dr = 2
rmaxZ

rmin

f (r; E) dr (55)

where rmin and rmax are the two positive roots of E � gH(r) = 0 for the energy value E. According to [10], the
area of the transitioning region, for small excess energy DE is

Atrans = TpoDE (56)

https://youtu.be/sNvgXCrX6oo
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where Tpo = 2p/w is the period of the unstable periodic orbit within the bottleneck, whose stable and
unstable manifolds act as the pathways for the ball to transition between the quadrants. We note that the w
can be obtained analytically, as the saddle point has eigenvalues ±l and ±iw, thus w can be written in terms
of the parameters which define the surface.

The symplectic area of the transitioning trajectories grows linearly in DE. If we write E = DE+ Ee, and perform
Taylor expansion of f (r; E) about Ee

f (r; E) = f (r; Ee) +
∂ f

∂E

����
Ee

DE +O(DE
2) (57)

AE =2
rmaxZ

rmin

f (r; Ee) dr +

0

@2
rmaxZ

rmin

∂ f

∂E

����
Ee

dr

1

ADE +O(DE
2) (58)

AE =A0 + tDE (59)

where

A0 =2
rmaxZ

rmin

f (r; Ee) dr = 2
rmaxZ

rmin

r
14
5
(Ee � gH(r))(1 + 4H2

r ) dr (60)

t =2
rmaxZ

rmin

∂ f

∂E

����
Ee

dr = 2
rmaxZ

rmin

1
2

s
14
5

(1 + 4H2
r )

(Ee � gH(r))
dr =

rmaxZ

rmin

s
14
5

(1 + 4H2
r )

(Ee � gH(r))
dr (61)

So,

AE = A0

✓
1 +

t

A0
DE

◆
(62)

Thus, the transition fraction is

ptrans =
Atrans

AE

=
TpoDE

A0

⇣
1 + t

A0
DE

⌘ (63)

⇡
Tpo

A0
DE

✓
1 � t

A0
DE +O(DE

2)

◆
(64)

So for small excess energy DE, the growth in ptrans with DE is linear, with slope Tpo/A0.

3 Phase space conduits leading to transition

We consider the dynamics of conservative system by determining the phase space skeleton that governs tran-
sition between potential well (or, equivalently escape from a well). In the simplest case of only two degrees
of freedom, the phase space is of 4 dimensional and the boundary between potential wells is defined using
unstable periodic orbit that lie in the bottleneck connecting the wells. This has also been called a transition
state in chemical reaction dynamics and form the boundary of a dividing surface used in calculation of reac-
tion rates [4, 6, 7, 8, 12, 16]. The set of all states leading to escape from a potential well can be understood as
residing within an invariant manifold of geometry R1 ⇥ S1, that is a cylinder or tube. The interior of this tube
defines the set of all states which will transition to the adjacent well.

3.1 Linearization near the rank one saddle

It is to be noted that the linearization of the behavior of trajectories near the saddle-center equilibrium points
appears in the leading order expression of the transition fraction (64). We are interested in trajectories which
have an energy just above that of the critical value. As shown in Fig. 1, the region of possible motion for E > Ee

contains a neck around each saddle equilibrium point. The geometry of trajectories close to the neck region is
studied by considering the linearized equations of motion near the equilibrium point.

In this section, let xe,1�2 denote the saddle equilibrium point between quadrant 1 and 2. Furthermore, for a
fixed energy E, we consider a neighborhood of xe,1�2 on the energy surface, whose configuration space pro-
jections are the neck regions described previously. We refer to this neighborhood as the equilibrium region and
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denote it by R on the energy surface.We perform a coordinate transformation with xe,1�2 = (xe,1�2, ye,1�2, 0, 0)
as the new origin, and keeping only the linear terms, we obtain

ẋ = Df|(xe,1�2,ye,1�2,0,0) x where, x = [x, y, vx, vy]
T (65)

The Jacobian involves derivatives of Eqns. (1) and (11), and can be written compactly as

Df(x, y, vx, vy) =

0

BB@

0 0 1 0
0 0 0 1

�hx Hx � hHxx �hyHx � hHxy �hvx
Hx �hvy

Hx

�hx Hy � hHxy �hy Hy � hHyy �hvx
Hy �hvy

Hy

1

CCA (66)

The eigenvalues of the linearized equations are of the form ±l and ±iw with corresponding eigenvectors
u1, u2, w1, w2, where l > 0, w > 0. Thus, the general (real) solution of (65) has the form

x(t) = (x(t), y(t), vx(t), vy(t)) = a1e
lt

u1 + a2e
lt

u2 + 2Re(be
iwt

w1) (67)

where, a1, a2 are real and b = b1 + ib2 is complex. It is to be noted that the time period of small oscillation
near the saddle equilibrium point is given by Tpo = 2p/w which appears in the leading order expression of
the transition fraction in Eqn. (64) and phase space flux in [10]. This general solution classifies solutions on
the energy surface into different classes upon the limiting behavior of position coordinates as t ! ±• in the
linearized system, as discussed in [1, 9]. By virtue of Moser’s generalization of a theorem of Lyapunov on
Hamiltonian system with only a pair of real eigenvalues and other complex eigenvalues, we can extend all the
qualitative results of the linearized solution near the equilibrium points to the full nonlinear equations [14, 15,
18].

Boundary between transition and non-transition trajectories.— The key observation from the analysis above is that
the asymptotic orbits are pieces of the stable and unstable cylindrical manifolds of the periodic orbit and they
separate two distinct types of motion: transit and non-transit. The transitition trajectories, passing from one
potential well to another, are those inside the cylindrical manifolds, or tube. The non-transit orbits, which
bounce back to their realm of origin, are those outside the tube.

This observation will be important for the numerical construction of sets of trajectories which transition from a
potential well. Emanating from the unstable periodic orbits in these neck regions are their stable and unstable
manifolds with a R1 ⇥ S1 geometry. The cylinders, or tubes, have the physical property that all motion through
the bottleneck in which the periodic orbit resides must occur through the interior of these surfaces. The tubes
thus act as phase space conduits for the trajectories to travel between large zones of the energy surface, that is
realms, which are separated by the bottlenecks.

3.2 Computational approach for finding regions of imminent transition

Step 1: Select appropriate energy above the critical value. For computation of manifolds that act as boundary

between the transition and non-transition trajectories, we select the total energy, E, above the critical value
and so the excess energy DE > 0. This excess energy can be arbitrarily large as long as the energy manifold
corresponding to the energy stays within the dynamical system’s phase space bounds.

Step 2: Compute the unstable periodic orbit associated with the rank one saddle. We consider a procedure
which computes periodic orbits around in a relatively straightforward fashion. This procedure begins with
small “seed” initial conditions obtained from the linearized equations of motion near xe,1�2, and uses differen-
tial correction and numerical continuation to generate the desired periodic orbit corresponding to the chosen
energy E [9]. The result is a periodic orbit of the desired energy E of some period T, which will be close to
2p/w where ±w is the imaginary pair of eigenvalues of the linearization around the saddle point.

Initial guess for periodic orbit. — The linearized equations of motion near an equilibrium point can be used to
initialize a guess for the differential correction method. Let us select the equilibrium point, xeq,1�2, for the
purpose of illustration and the transition fraction results presented in the main article. The linearization yields
an eigenvalue problem Av = gv, where A is the Jacobian matrix evaluated at the equilibrium point, g is the
eigenvalue, and v = [k1, k2, k3, k4]T is the corresponding eigenvector. Thus, using the structure of A from
Eqn. (66) we can write

k3 = gk1

k4 = gk2

ak1 + bk2 = gk3

ck1 + dk2 = gk4

(68)
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So when g = ±l, which correspond to the hyperbolic directions of the rank-1 saddle, the corresponding
eigenvectors are given by

u1 = [1, k2, l, lk2]

u2 = [1, k2,�l,�lk2]
(69)

and when g = ±iw, which correspond to the center directions, the corresponding eigenvectors are given by

w1 = [1, k2, iw, iwk2]

w2 = [1, k2,�iw,�iwk2]
(70)

where, k2 = (g2 � a)/b is the constant depending on the eigenvalue, g, and the entries of Jacobian, a =
�hx Hx � hHxx and b = �hyHx � hHxy, are evaluated at the equilibrium point (xe,1�2, ye,1�2, 0, 0). Thus, the
general solution of linearized equation of motion in Eqn. (67) can be used to initialize a guess for the periodic
orbit for a small amplitude, Ax << 1. Let b = �Ax/2 and using the eigenvector along the center direction we
can guess the initial condition to be

x̄0,g = (xe,1�2, ye,1�2, 0, 0)T + 2Re(bw1) = (xe,1�2 � Ax, ye,1�2 � Axk2, 0, 0)T (71)

Differential correction of the initial condition.— In this procedure, we attempt to introduce small change in the
initial guess such that the periodic orbit x̄po

��x̄po(T)� x̄po(0)
�� < e (72)

for some tolerance e << 1. In this approach, we hold x�coordinate constant, while applying correction
to the initial guess of the y�coordinate, use vy�coordinate for terminating event-based integration, and
vx�coordinate to test convergence of the periodic orbit. It is to be noted that this combination of coordi-
nates is suitable for the structure of initial guess at hand, and in general will require some permutation of the
phase space coordinates to achieve a stable algorithm.

Let us denote the flow map of a differential equation x̊ = f(x) with initial condition x(t0) = x0 by f(t; x0).
Thus, the displacement of the final state under a perturbation dt becomes

dx̄(t + dt) = f(t + dt; x̄0 + dx̄0)� f(t; x̄0) (73)

with respect to the reference orbit x̄(t). Thus, measuring the displacement at t1 + dt1 and expanding into
Taylor series gives

dx̄(t1 + dt1) =
∂f(t1; x̄0)

∂x0
dx̄0 +

∂f(t1; x̄0)
∂t1

dt1 + h.o.t (74)

where the first term on the right hand side is the state transition matrix, F(t1, t0), when dt1 = 0. Thus, it can
be obtained as numerical solution to the variational equations as discussed in [17]. Let us suppose we want to
reach the desired point xd, we have

x̄(t1) = f(t1; x̄0) = x̄1 = xd � dx̄1 (75)

which has an error dx̄1 and needs correction. This correction to the first order can be obtained from the state
transition matrix at t1 and an iterative procedure of this small correction based on first order yields convergence
in few steps. For the equilibrium point under consideration, we initialize the guess as

x̄(0) = (x0,g, y0,g, 0, 0)T (76)

and using numerical integrator we continue until next vx = 0 event crossing with a high pecified tolerance
(typically 10�14). So, we obtain x̄(t1) which for the guess periodic orbit denotes the half-period point, t1 =
T0,g/2 and compute the state transition matrix F(t1, 0). This can be used to correct the initial value of y0,g to
approximate the periodic orbit while keeping x0,g constant. Thus, correction to the first order is given by

dvx1 = F32dy0 + v̊x1 dt1 + h.o.t (77)
dvy1 = F42dy0 + v̊y1 dt1 + h.o.t (78)

where Fij is the (i, j)th entry of F(t1, 0) and the acceleration terms come from the equations of motion evalu-
ated at the crossing t = t1 when vx1 = dvx1 = 0. Thus, we obtain the first order correction dy0 as

dy0 ⇡
✓

F42 � F32
v̊y1

v̊x1

◆�1
dvy1 (79)

y0 ! y0 � dy0 (80)
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which is iterated until |vy1 | = |dvy1 | < e for some tolerance e, since we want the final periodic orbit to be of
the form

x̄t1 = (x1, y1, 0, 0)T (81)

This procedure yields an accurate initial condition for a periodic orbit of small amplitude Ax << 1, since
our initial guess is based on the linear approximation near the equilibrium point. It is also to be noted that
differential correction assumes the guess periodic orbit has a small error (for example in this system, of the
order of 10�2) and can be corrected using first order form of the correction terms. If, however, larger steps in
correction are applied this can lead to unstable convergence as the half-orbit overshoots between successive
steps. Even though there are other algorithms for detecting unstable periodic orbits, differential correction is
easy to implement and shows reliable convergence for generating a dense family of periodic orbits at arbitrary
high excess energy near the rank-1 saddle.

Numerical continuation to periodic orbit at arbitrary energy.— The above procedure yields an accurate initial condi-
tion for a periodic orbit from a single initial guess. If our initial guess came from the linear approximation near
the equilibrium point, from Eqn. (67), it has been observed numerically that we can only use this procedure
for small amplitude, of order 10�4, for the chosen parameters in (1), periodic orbits around xe,1�2. This small
amplitudes correspond to small excess energy, typically of the order 10�2 (cm/s)2, and if we want a periodic
orbit of arbitrarily large amplitude, we need to use numerical continuation to generate a family which reaches
the appropriate energy E. This is performed using two nearby periodic orbits of small amplitude. To this
end, we proceed as follows. Suppose we find two small nearby periodic orbit initial conditions, x̄(1)0 and x̄(2)0 ,
correct to within the tolerance d, using the differential correction procedure described above. We can generate
a family of periodic orbits with successively increasing amplitudes around x̄e,1�2 in the following way. Let

D = x̄(2)0 � x̄(1)0 = [Dx0, Dy0, 0, 0]T (82)

A linear extrapolation to an initial guess of slightly larger amplitude, x̄(3)0 is given by

x̄(3)0,g = x̄(2)0 + D (83)

=
h
(x(2)0 + Dx0), (y

(2)
0 + Dy0), 0, 0

iT

(84)

=
h

x
(3)
0 , y

(3)
0 , 0, 0

iT

(85)

Thus, keeping x
(3)
0 fixed, we can use differential correction on this initial condition to compute an accurate

solution x̄(3)0 from the initial guess x̄(3)0,g and repeat the process until we have a family of solutions. We can

keep track of the energy of each periodic orbit and when we have two solutions, x̄(k)0 and x̄(k+1)
0 , whose energy

brackets the appropriate energy, E, we can resort to combining bisection and differential correction to these
two periodic orbits until we converge to the desired periodic orbit to within a specified tolerance. Thus, the
result is a periodic orbit at desired energy E and of some period T with an initial condition X0.

Step 3: Computation of invariant manifolds. First, we find the local approximation to the unstable and
stable manifolds of the periodic orbit from the eigenvectors of the monodromy matrix. Next, the local linear
approximation of the unstable (or stable) manifold in the form of a state vector is integrated in the nonlinear
equations of motion to produce the approximation of the unstable (or stable) manifolds. This procedure is
known as globalization of the manifolds and we proceed as follows:

First, the state transition matrix F(t) along the periodic orbit with initial condition X0 can be obtained nu-
merically by integrating the variational equations along with the equations of motion from t = 0 to t = T.
This is known as the monodromy matrix M = F(T) and the eigenvalues can be computed numerically. For
Hamiltonian systems (see [13] for details), tells us that the four eigenvalues of M are of the form

l1 > 1, l2 =
1

l1
, l3 = l4 = 1 (86)

The eigenvector associated with eigenvalue l1 is in the unstable direction, the eigenvector associated with
eigenvalue l2 is in the stable direction. Let e

s(X0) denote the normalized (to 1) stable eigenvector, and e
u(X0)

denote the normalized unstable eigenvector. We can compute the manifold by initializing along these eigen-
vectors as:

X
s(X0) = X0 + ee

s(X0) (87)

for the stable manifold at X0 along the periodic orbit as

X
u(X0) = X0 + ee

u(X0) (88)
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(a) (b)

Figure S3: (a) Unstable periodic orbits for excess energy, DE = 100, 200, 300, 400, 500, 600, 700 (cm/s)2, around
the equilibrium point, xe,1�2 connecting the quadrant 1 and 2. The cross marks indicate the initial conditions
obtained using differential correction, while the initial condition for high excess energy required numerical
continuation. (b) Invariant manifolds for excess energy, DE = 100, 300, 500 (cm/s)2 that act as phase space
conduits for transition trajectories to travel between potential wells. The manifolds shown here are connecting
the periodic orbit around the saddle between quadrant 1 and 2 and the Poincaré section, U

�
1 in the quadrant

1. For monotonically increasing values of energy, these manifolds are nested such that trajectory at a specific
value of energy has to pass through the manifold at the same energy. A movie (same as Fig. 2 in the primary
manuscript) showing the geometrical structure of these manifolds in the (x, y, vy) space can be found here.

for the unstable manifold at X0. Here the small displacement from X0 is denoted by e and its magnitude should
be small enough to be within the validity of the linear estimate, yet not so small that the time of flight becomes
too large due to asymptotic nature of the stable and unstable manifolds. Ref. [9] suggests typical values of
e > 0 corresponding to nondimensional position displacements of magnitude around 10�6. By numerically
integrating the unstable vector forwards in time, using both e and �e, for the forward and backward branches
respectively, we generate trajectories shadowing the two branches, W

u
+ and W

u
�, of the unstable manifold of

the periodic orbit. Similarly, by integrating the stable vector backwards in time, using both e and �e, for
forward and backward branch respectively, we generate trajectories shadowing the stable manifold, W

s
+,�. For

the manifold at X(t), one can simply use the state transition matrix to transport the eigenvectors from X0 to
X(t):

X
s(X(t)) = F(t, 0)X

s(X0) (89)

It is to be noted that since the state transition matrix does not preserve the norm, the resulting vector must be
normalized. The globalized invariant manifolds associated with rank-1 saddles are known as Conley-McGehee
tubes [11]. These tubes form the skeleton of transition dynamics by acting as conduits for the states inside
them to travel between potential wells.

Step 4: Compute intersection of tubes with the Poincaré surface-of-section Now an event crossing function
can be used along with the numerical integration to compute intersection of the tube manifolds with the
Poincaré surface-of-section, U

�
1 as defined in Eqn. (27), and then transformed to polar coordinates using the

transformation derived in §2. This is shown for few excess energy in Fig. S4.

https://youtu.be/gMqrFX2JkLU
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(a) (b) (c) (d)

Figure S4: Shows the intersection of tube (stable) manifold and energy surface with the Poincaré SOS, U
�
1 ,

in black and magenta, respectively, for DE = 100, 300, 500, 700 (cm/s)2. The trajectories that are in the cyan
region for the given energy DE lead to imminent transition from the quadrant 1 to 2. A movie (same as Fig. 4
in the primary manuscript) of increasing transition area on the Poincaré section, U

�
1 , can be found here.
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