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Abstract This paper introduces the trajectory diver-
gence rate, a scalar field which locally gives the instan-
taneous attraction or repulsion of adjacent trajectories.
This scalar field may be used to find highly attracting
or repelling invariant manifolds, such as slow mani-
folds, to rapidly approximate hyperbolic Lagrangian
coherent structures, or to provide the local stability of
invariant manifolds. This work presents the derivation
of the trajectory divergence rate and the related tra-
jectory divergence ratio for two-dimensional systems,
investigates their properties, shows their application to
several example systems, and presents their extension
to higher dimensions.

Keywords Vector fields - Phase space structure -
Computational geometry - Normally hyperbolic
invariant manifolds

1 Introduction

To better understand the properties of mathematical
models and experimental measurements, it is often con-
venient to look at the geometric structure of the flow
of a resulting vector field. There often exist lower-
dimensional manifolds which dominate the attraction
and repulsion, swirling, or shearing of trajectories
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advecting under the flow. Methods to find such struc-
tures have been applied to better understand topics
including plant pathogen spread [34], animal locomo-
tion [30,32], seabird foraging patterns [22], geophysi-
cal flows [26,43], chemical reactions [48], comet dis-
tributions [11], and structural mechanics [45].

In autonomous systems, the simplest geometric
structure of interest is the fixed point, which is a zero-
dimensional invariant manifold in the flow. Stable,
unstable, and center manifolds of a fixed point may
be calculated through a number of classical methods,
including “growing” the stable or unstable manifolds
by integrating the eigendirections of fixed points back-
ward or forward in time [23]. However, in the context
of weak stable submanifolds, these methods begin to
break down [30]. Some weak submanifolds are part of a
class of geometric structures known as slow manifolds
which exhibit a separation of time scales [25], attract-
ing or repelling other trajectories in phase space. This
difference in time scales between motion along a slow
manifold and the motion normal to it allows them to be
classified as normally hyperbolic invariant manifolds
(NHIMs) [44].

Geometric structure may also be present in the
absence of fixed points or slow manifolds. Recent
developments in dynamical systems have led to several
useful generalizations of some key geometric features.
Distinguished hyperbolic trajectories generalize stable
and unstable manifolds to aperiodic flows and are iden-
tified using the “M-function” [29]. Hyperbolic coher-
ent structures represent dynamically evolving trans-
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port barriers in flows [36,37]. Although the methods
of coherent structures are typically situated within the
context of fluid dynamics, such structures have applica-
tions to the flow of general vector fields [1,15,30,40].
Detecting and analyzing the underlying structures of
flows give a better understanding of how the system
evolves, whether that flow represents the motion of a
fluid or some other general dynamical system.

Methods to identify coherent structures may be
based on integrated trajectory information or may be
calculated from the instantaneous vector field for the
entire volume. Most state-of-the-art methods are tra-
jectory based, using finite-time integration of trajec-
tories to calculate coherent structures [5,36]. There is
a wide variety of trajectory-based methods to identify
coherent structures or coherent sets, including transfer
operator methods [10, 13], topological methods [3,7],
and stretching-based methods such as the finite-time
Lyapunov exponent (FTLE) [37]; see Hadjighasem et
al. [17] for a review. Lagrangian descriptors, similarly,
calculate properties of the flow along trajectories and
can be used to detect “distinguished trajectories” [28,
29]. However, trajectory-based methods involve sig-
nificant computational resources, requiring trajectory
integration over an ensemble of initial conditions [4,6].

There is much to be gained by looking at the
instantaneous information of vector fields. Although
the trajectory-dependent coherent structures are more
robust to the flow, the short time behavior of these struc-
tures may be of interest [21]. Vector field schemes are
also much more computationally efficient, and their
changes can be tracked in time for nonautonomous
flows. Historically, most vector field-based methods
have focused on elliptic, or vortex-like, coherent struc-
tures [8]. More recent work has developed the notion
of objective Eulerian coherent structures for two-
dimensional flows [35], which include hyperbolic and
parabolic structures in addition to objectively defined
elliptic coherent structures. However, while objectiv-
ity is necessary for detecting, for instance, vortex-like
coherent structures in a fluid, objectivity may be a
disadvantage in other examples of dynamical systems
[20,28].

1.1 Main result

This paper introduces the trajectory divergence rate for
two-dimensional vector fields, given by,
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p=n'Sn,
where n = Rv/|v| is the unit normal vector field,
with R = ((1)_01) giving a 90° rotation, and S =

3 (Vv + (Vv)T) is the rate-of-strain tensor, represent-
ing the symmetric component of the Jacobian of the
system vector field v. In this work, the dagger, (~)T, indi-
cates the matrix transpose to avoid confusion with time-
integrated methods. The trajectory divergence rate is
an inherent property of C! vector fields, measuring
the extent to which the trajectory passing through each
point instantaneously repels or attracts nearby trajec-
tories. This paper will show that this quantity may be
used as a diagnostic tool to approximate slow mani-
folds and hyperbolic coherent structures by showing
regions of strong instantaneous repulsion or attrac-
tion.

Instantaneous attraction and repulsion have been
considered previously, through other metrics such as
the normal infinitesimal Lyapunov exponent (NILE)
[21] and the strain acceleration tensor [19]. These meth-
ods have primarily been applied to partition the space
or look into regions of local stability or instability, par-
ticularly within applications of turbulence. The trajec-
tory divergence rate introduced herein is intended to
serve as a “rough and ready” method for approximat-
ing hyperbolic, or stretching-based, geometric struc-
tures in the flows of general nonlinear dynamical sys-
tems. Much like local curvature [12], this quantity may
be thought of as an inherent property of continuously
differentiable vector fields, showing the instantaneous
local divergence or convergence of nearby trajectories.
Under certain conditions, the regions of highest local
divergence or convergence serve to approximate finite-
time coherent structures.

The idea of stability is asymptotic in nature; a stable
invariant manifold is one for which nearby trajectories
stay close for t — oo. Although transport barriers and
invariant manifolds in flows are calculated based on
the long-term dynamics of the system, and therefore
the long-term repulsion of the manifold in question,
the instantaneous repulsion of invariant manifolds pro-
vides additional insights into the character of an invari-
ant manifold, as regions of a globally attracting invari-
ant manifold may be instantaneously repelling [19,39].
The trajectory divergence rate is easily computable,
requiring only the vector field and its gradient, and can
serve as a useful diagnostic in the search for influential
geometric structures in flows.
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Section 2 gives the mathematical preliminaries and
notation to provide the mathematical context for the
divergence rate. Section 3 shows the derivation of the
trajectory divergence rate and discusses its properties.
Section 4 shows several applications of the divergence
rate over a different situations in which it may prove
useful. Section 5 extends the trajectory divergence rate
from two-dimensional to higher-dimensional systems
and provides a three-dimensional example. Finally,
Sect. 6 provides some discussion about the work of
this paper to conclude the work.

2 Background and notation

To begin, consider a general two-dimensional, autono-
mous ordinary differential equation

x=v(x), xeUCR? reR, (1)

with its time-7" mapping all initial conditions forward
to their positions after a duration 7',

Fr:U—U, TEeR,

xo — X7 = X(T'; Xq).

2)

For any x € U with v(x) # 0 (that is, excluding equi-
librium points), one can define the following unit vector
fields parallel and normal to the governing vector field
v(x), respectively,

_ v(X)
=N 5
0—1
n(x) = Re(x), R = <1 0 )

The gradient of the time-7 flow map VFr defines a
mapping from vectors based at xg, such as e(xp) and
n(xyp), to vectors based at xr, showing how those vec-
tors deform with the flow. The tangent vector, in gen-
eral, maps to the new tangent direction, but the normal
vector does not map to the normal direction at time T
due to the shear of the flow.

2.1 Trajectory-normal repulsion rate

For any trajectory passing through a point xg € U with
v(xg) # 0, the trajectory-normal repulsion rate p (Xo)
[20] over the time interval [0, 7] may be defined locally
as the projection of VFr (xg)ng onto the new normal
vector nr,

0

X0

Fig. 1 Geometry of the trajectory-normal repulsion rate

pr(Xo) = (n7, VF7 (X0)no), C))

where ny = n(x7) = n(Fr(xp)) and (-, -) is the usual
inner product in RZ. As illustrated in Fig. 1, pr(xp) is
a measure of the growth of infinitesimal perturbations
normal to the invariant manifold containing xo over
the time interval [0, T']. If the projection pr(x9) > 1,
then infinitesimal perturbations normal to the trajec-
tory through xo grow over the time interval [0, T']. Note
that, although overall growth over the duration 7' may
be repelling (attracting), it is possible for the invari-
ant manifold to be instantaneously attracting (repelling)
[39].

This scalar field p7(xg) can be used to extract the
most influential invariant manifolds in the flow, in the
sense that it reveals those manifolds that normally repel
(or attract) other manifolds at the largest rate. Using this
trajectory-normal repulsion rate, one can calculate, for
example, slow manifolds, such as those found in the
examples below.

2.2 Trajectory-normal repulsion ratio

A related quantity is the trajectory-normal repulsion
ratio [20], which is the ratio of normal repulsion to the
tangential stretching along an invariant manifold pass-
ing through the point xo over the time interval [0, T'],

pr(X0)

_ 5
IVET (x0)eo] ©)

vr(Xp) =

Where the trajectory-normal repulsion ratio v (Xp) >
1, the normal stretching dominates the tangential
stretching of the curve.
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Both the trajectory-normal repulsion rate and trajec-
tory-normal repulsion ratio can be written in terms of
the right Cauchy—Green tensor Cr(xp), well-known
from continuum mechanics [41], as well as its use in
FTLE and LCS calculations [20],

\/ [v(x0) 2 detCr (x0)
pr(Xo) =
(v(x0), C1(X0)Vv(x0)) 6)
|v(x0)|* v/detCr (xo)
(v(x0), Cr(X0)Vv(X0))
As a matter of notation, in this work ()7 will indicate
a value calculated over the interval [0, T']. Note that T
may be positive or negative. Because of their depen-
dence on the normal vector in the derivation of these
expressions, these scalar fields both remain defined
only for two-dimensional systems.

When both pr(x) > 1 and vy (x) > 1 forallx € y,
where y is an invariant manifold, and y is a ridge of
the pr-field, y is a constrained Lagrangian coherent
structure [20], in the sense that the variational search
for attracting or repelling curves is constrained to the
space of invariant manifolds.

vr (Xo) =

3 The trajectory divergence rate

The trajectory-normal repulsion rate pr may be useful
in finding attracting (or repelling) structures in a two-
dimensional flow [20], but calculation of the time-T
flow map over the domain of interest is computationally
expensive. Therefore, this work seeks an instantaneous
measure that gives the leading order behavior of this
scalar field.

For scalar and tensor fields, the dependence on X
will be notationally dropped for clarity, as it will be
understood. For small time T, the right Cauchy—Green
tensor, Cr, may be expanded in terms of integration
time T,

dCT l d2CT 2
Cr=C+ — T+ - —— Te+---
! ’ dT {p—g 2 d7? T=0
(7
Because all derivatives are evaluated at 7 = O,

% | — = % | ,—o- The derivatives of the right Cauchy—

Green tensor are given by the Rivlin—Ericksen tensors
(411,

d*Cr de (de>T

at ~Va TV
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Ak T dk drk

k=1 Pt
k d'x
t2 () () ¥
=

Forsmall T « 1, the leading order behavior is given by
the first Rivlin-Ericksen tensor (Vv+(Vv)"). Neglect-
ing higher order dependence on 7', the expansion of the
Cauchy—Green tensor (7) simplifies to,

d*Cr d*x ( dkx)T

d*ix

®)

Cr =1+ 28T + O(T?), 9)

where S represents the symmetric rate-of-strain tensor,
defined as,

s:%(vVJerT). (10)

Note that in R?, we will denote the eigenvalues of S as
s1, 52, with 51 < 55.

The expansion of the Cauchy—Green tensor in (7)
makes it possible to perform a Taylor expansion of
the trajectory-normal repulsion rate, pr from (4) and
Fig. 1 for a small integration time 7 < 1. For a
two-dimensional system, the following identity allows
the expansion of the determinant within the trajectory-
normal repulsion rate,

det(A + B) = detA + detB + detA - tr(A~'B), (11)

Neglecting the higher order dependence on 7 in (9)
admits the substitution C; = I + 2TS. Therefore,
det Cr can be expressed as,
det Cr = det(I + 27S)
= det(I) 4 det(2TS) + det()trTI'S)
=1 +4T?det(S) + 2Ttr(S)
=14 2Tw(S) + O(T?).

12)

To finish the expansion of (6), the same substitution
Cr =1+ 2TS gives the following result.

2 v|?
viCrv V2 +2TviSv + O(T?)

1

T+ Larvisv+o(r?) (13)

T

=1- ZT% +O(TY
A\
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Fig. 2 This schematic
shows the relationship
between the divergence rate
and the time-T7 repulsion
rate pr. The divergence rate
is the instantaneous rate of
change of the repulsion rate,
which is therefore signified
as p

Combining these two substitutions gives the follow-
ing relation for the trajectory-normal repulsion ratio.

_/Iv|?detCr
Pr = viCrv
viSv

=JO+@T&$)+OUQ»(1—2T|

+—C?(T2)>

v|2

.
—1+ (u(S) - %) T +0(1?)
v

(14)
Neglecting higher order terms for small 7',
'S
pT=1+<tr(S)—¥>T (15)
vl
Therefore, the leading order behavior of pr for small
T is gi tirely by th tity p = éﬁl) ,
is given entirely by the quantity p = 47|
ts
p=t@®) -7 (16)
vl

which is the trajectory divergence rate. Figure 2 shows
a schematic of the geometric interpretation of this
derivation.

This quantity is independent of the choice of the
time parameter 7, and, furthermore, does not require
integration to be calculated. It is dependent solely on
the given vector field v(x) and its gradient through the
rate-of-strain tensor S. As shown in “Appendix”, for
two-dimensional systems, this expression reduces to
simply

p=n'Sn (17)

The instantaneous rate of normal repulsion is given
by a quadratic form on the rate-of-strain tensor by the

VF rng \

PdT

Po

\&

dr

unit normal vector. The trajectory divergence rate can
also be derived via the following expression for the rate
of change of length of an infinitesimal vector ¢,

1d

—— > =¢'Se. (18)
2dt

3.1 Trajectory divergence ratio

Following the same procedure as the expansion of the
repulsion rate, the trajectory-normal repulsion ratio
may be expanded by,

_ IvI> VdetCr
TG
for small T to find its instantaneous rate of growth.

From (12),

19)

VdetCr = 1+ Ttr(S) + O(T?), (20)
and using (13),
w:(l+ﬂﬂ$+00%)O—QTw?4%Xﬂ0

[v|

viSv

=1+TG@%JTF)+OG5
v

(2D
And the rate of vr is given as
o Vi (S)I-2S)v
V=

vl

Similar to the trajectory divergence rate p, the trajec-
tory divergence ratio is dependent only on the rate-of-
strain tensor and therefore does not require the calcula-
tion of trajectories. These scalar fields give a measure-

ment of the instantaneous stretching of normal vectors
throughout phase space and can be used to find the

(22)
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Fig. 3 Schematic of the
physical interpretation of
the trajectory divergence
rate p. Negative values
indicate converging
trajectories, while positive

values indicate diverging
trajectories

most attracting and repelling structures with much less
computational cost.

3.2 Physical interpretation of the trajectory
divergence rate

The trajectory divergence rate provides a scalar mea-
surement of how much a trajectory is attracting or
repelling nearby trajectories, representing the time-
normalized slope of the normal distance between
nearby trajectories, as visualized in Fig. 2. Therefore,
as shown in Fig. 3, a positive divergence rate indicates
diverging trajectories, a negative divergence rate indi-
cates converging trajectories, and a zero divergence rate
shows the regions of the flow where trajectories are par-
allel. To visualize this, consider the simple linear saddle
flow.

Example 1 (Linear saddle flow.) The saddle-point
flow represents the simplest case of stable and unstable
manifolds. The system is given by

X =ux,

. (23)
y=-y.
As is visible in Fig. 4, the linear saddle flow repels
trajectories from the y-axis and attracts them to the x-
axis in forward time.

The unit normal vector and rate-of-strain tensor are

given by
1
n=—|:yi|, S=[10]. (24)
/x2 + y2 X 0-1
From these, the trajectory divergence rate is computed
to be,
y2 — 52

y= 25
P=aiy (25)
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Figure 4 shows trajectories in phase space and the
trajectory divergence rate of the linear saddle. From
(25) and the trajectory divergence rate in the figure, tra-
jectories are converging when x? > y? and diverging
when y? > x2. Trajectories are parallel where y = =x,
as shown in white. The ridges and troughs of the trajec-
tory divergence rate field give the most repelling and
attracting curves in the field: the vertical and horizontal
axes, respectively. Interestingly, the forward and back-
ward finite-time Lyapunov exponents are both uniform
for the linear saddle flow, indicating no structure [20].

3.3 Remarks on the trajectory divergence rate

3.3.1 (Lack of) objectivity of the trajectory divergence
rate

The trajectory divergence rate (17) is not an objective
quantity, as a scalar quantity such as p would be objec-
tive only if it remained unchanged under any translation
and rotation of reference frame [35,41]. In other words,
objective scalar values remain invariant under trans-
formations belonging to the Special Euclidean group
SE (n). Because the trajectory divergence rate depends
on the tangent vectors, which are not objective, the
quantity itself is not objective. However, as shown in
the context of Lagrangian descriptors, objectivity is
not always a desirable trait [28]. For the example of
a rotating saddle flow, the finite-time Lyapunov expo-
nent, which is an objective quantity, gives no structure
at all. However, in that example, Lagrangian descrip-
tors, which are not objective, are able to show the
rotating saddle at every snapshot in time. Under sit-
uations where objectivity is necessary, the trajectory
divergence rate may not be the appropriate tool to use.
However, objectivity is not always a desirable property
and makes no sense in general abstract phase spaces.
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Fig. 4 The phase portrait (top) and trajectory divergence rate
field (bottom) for Example 1

3.3.2 Relationship to objective Eulerian coherent
structures

In their paper introducing objective Eulerian coherent
structures [35], Serra and Haller introduce two objec-
tive quantities to calculate these structures: the stretch-
ing rate p and shear rate ¢. These equations depend on
the tangent vectors x” of a general curve y parameter-
ized by its arc length s.

. ().85)
(¥'(5), 2/ (s))
. _ (). (SR=RS)x'(s))
T .0

(26)
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These scalar functions are objective because they
depend generally on S, which is an objective tensor, and
tangent vectors to a curve y, which is not dependent
on the vector field. If these curves are restricted to tra-
jectories following the vector field rather than general
curves, then their tangent vectors become the vector
field x’ = v, and p and ¢ become quadratic forms on
vectors v like the trajectory divergence rate and trajec-
tory divergence ratio. However, they lose the objectivity
that is central to the previous work. As discussed above,
there are situations where objectivity is less impor-
tant, so trajectory-based variations of the stretch rate
Py and shear rate ¢, which depend on the vector field
may prove useful. Considering the unit tangent vector
e = v/ |v|], these are given by,

Dy = (e, Se),

) (28)
dv = (e, (SR —RS)e).

Together with the trajectory divergence rate introduced
above, these three quadratic forms measure the instan-
taneous rates of tangential stretching, normal stretch-
ing, and shear of the vector field. The trajectory stretch
rate p, and trajectory shear rate ¢, are worth further
exploration in future studies.

3.3.3 Normal hyperbolicity of trajectories

On the other hand, removing the restriction of the tra-
jectory divergence rate to trajectories of the vector field
to instead calculate the normal repulsion of a gen-
eral surface, the trajectory divergence rate becomes
an objective scalar value just like the stretching and
shear rates above. In fact, the expression for the tra-
jectory divergence rate in Eq. (17) is similar to an
existing quantity which has been applied to normal
vectors of candidate Lagrangian coherent structure as
a test of hyperbolicity, using gradients of the finite-
time Lyapunov exponent field to determine the tangent
and normal directions [16]. The trajectory divergence
rate, in contrast, uses the vector normal to trajecto-
ries of the underlying dynamical system. From this
observation, it is clear that the trajectory divergence
rate gives the normal hyperbolicity field of the vec-
tor field. Because of this, the trajectory divergence rate
may be a useful metric for finding normally hyperbolic
structures in a flow. This idea is explored further in
Sect. 4.1.
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4 Applications of the trajectory divergence rate

As a measure of normal attraction and repulsion of tra-
jectories of a system, the trajectory divergence rate can
be applied to a variety of special cases to identify influ-
ential structures in dynamical systems. [t may serve as a
good approximation for hyperbolic Lagrangian coher-
ent structures or as a method to identify slow manifolds.
Additionally, it may be relevant to calculate the normal
hyperbolicity of a particular trajectory for applications
in control.

4.1 Approximation of slow manifolds and normally
hyperbolic invariant manifolds

Given the interpretation of the trajectory divergence
rate as a measure of normal hyperbolicity, it becomes
a natural tool to identify normally hyperbolic invari-
ant manifolds (NHIMs). One of the key examples of
NHIMs is in the study of slow manifolds of multi-
ple time scale systems [25]. In such systems, there is
a lower-dimensional manifold on which most of the
dynamics occur, referred to as the slow manifold. This
is typically conceptualized as an attracting manifold,
but may be repelling in some cases. Outside of the
slow manifold, the motion moves more quickly onto
(or away from) the slow manifold.

Example 2 (Overdamped bead on a rotating hoop.)
This example comes from Strogatz [38, Section 3.5],
providing a nice example of a slow-fast system. The
system conceptualizes a bead moving along a circu-
lar hoop of radius » while the hoop is spinning with
constant angular velocity w about a vertical axis. Con-
sidering a dimensionless time 7 = mig and parameters

ngr
b2

2
w= % and & =
to the system,

the forces on the body reduce

¢ =Q,
. 1 . 29)
Q= - (singp(ncosgp — 1) — Q).

When the damping coefficient b is large, the param-
eter ¢ becomes very small, and trajectories collapse
quickly to the curve Q = sin¢(ucos¢ — 1) due to
the high damping in the system, and then ooze along
it toward one of several fixed points. This system is
illustrated in Fig. 5.
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Fig. 5 (Left) Schematic of an overdamped bead on a rotating
hoop, Coulomb friction directly opposes the motion along the
hoop, while the entire hoop rotates about the vertical axis with
rotational velocity w. (Right) The phase portrait for the model of
Example 2 defined by (29), using ¢ = 0.02 and p = 2.3

For the parameters shown in Figs. 5 and 6, both
¢ = 0, representing the bottom of the hoop, and ¢ = 7,
representing the top of the hoop, give unstable fixed
points, and a pair of fixed points on either side of the
bottom of the hoop at ¢ = =+ arccos ﬁ become stable
fixed points.

Figure 6 shows that the trajectory divergence rate is
quite effective at capturing the slow manifold for this
example. The trough in the divergence rate field gives
the attracting slow manifold onto which all trajecto-
ries converge. The trajectory divergence rate disappears
near the equilibria of the system which are found each
time the curve crosses the horizontal axis. As the trajec-
tory divergence rate is calculated with normal vectors
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Fig. 6 (top) The trajectory divergence rate and (bottom) the
trajectory divergence ratio of Example 2 with ¢ = 0.02 and
n = 2.3. These diagnostics both show strong attraction along
the slow manifold visible above in Fig. 5

which are normalized by the magnitude of velocity, it
is undefined at precisely the equilibria of the system.

4.1.1 Search for the most attractive invariant manifold

A trajectory which locally minimizes the trajectory
divergence rate may be identified as the most attrac-
tive invariant manifold in phase space. The arc-length
averaged trajectory divergence rate along a trajectory
y gives a way to identify this minimizing trajectory,
defined by,

. 1
P=— yds |, 30
o(y) </yp s) G0

where o (y) = fy ds is the arc length of y.

Next, the arc-length averaged divergence rate P is
minimized among a collection of trajectories I to find
a locally minimizing trajectory y*,

693
—10.0-
Minimal invariant manifold
shown in Fig. 8
—10.5-
Ry
-11.04
-2 0 2
%

Fig.7 The arc-length averaged trajectory divergence rate p over
1000 trajectories integrated both forward and backward along the
vertical slice ¢ = —3

Fig.8 The results of the minimization of (31) as shown in Fig. 7.
The red dot shows the local minimum point found from the
simulations, and the red curve shows the forward integration
of this trajectory. Local minima were calculated at the points
¢ = {—3.0,—-0.1,0.1, 3.0} and integrated forward. (Color fig-
ure online)

y* = min P. (31)
yel

Figure 7 shows the result of the calculation of arc-
length averaged divergence rate for trajectories inter-
secting ¢ = —3 over a range <]50 € [—3, 3]. These tra-
jectories were integrated forward until they reached a
fixed point and integrated backward until they reached
¢ = =£11. The results of this numerical minimization
are shown in Fig. 8 by identifying the locally minimiz-
ing trajectory y* by its intersection with ¢ = —3 by
the red circle and showing its forward integration in
red. This process is repeated for ¢ = —0.1, and by
symmetry, the values are obtained for ¢ = 0.1 and
¢ =3.0.
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Fig. 9 The phase portrait for Eq. (32) in Example 3 with 6 =
—5°, showing the weak stable manifold (red) and strong stable
manifold (orange) passing through the stable node fixed point at
(0.50, — 0.56). (Color figure online)

4.1.2 Comparison with other methods

As an example of a situation where trajectory-restricted
measurements are useful, consider the following exam-
ple.

Example 3 (The terminal velocity manifold in glid-
ing flight.) In a simplified model of passive gliding
flight, a globally attracting codimension-one manifold
may be observed in the glider’s velocity space [30,47].
Because every trajectory is rapidly attracted to this
structure and evolves along or near it, it serves as a
higher-dimensional analogue to terminal velocity and
is therefore referred to as the terminal velocity mani-
fold. The glider’s motion under this model is given by
the nondimensional equations of motion,

Uy = (vﬁ—i—vf) (CL (y +6)siny
—Cp(y +6)cosy),

v, = (vf +v§) (CL(y +6)cosy
+Cp (y +0)siny) — 1,

(32)

where vy = gic Vyand v, = gic V, are the dimensionless
horizontal and vertical components of velocity, 6 is the
body’s fixed pitch angle with respect to the ground,
y = arctan 7: is the angular direction of motion of the
body, C;, and Cp represent lift and drag as functions of
angle of attack y +6, and derivatives are with respect to
dimensionless time t = +/ce/gT. The universal glide
scaling parameter € = ngS included in these scalings
allows for comparison of different gliders with the same
equations [47]. Within these dimensionless variables
are the horizontal and vertical velocity V,, V,, chord
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length c, glider span S, gravity g, time 7', fluid density
p, and mass m.

The phase portrait of this example for a falling flat
plate with a fixed pitch of & = —5° is shown in
Fig. 9. From the stable fixed point located at (vy, v;) =
(0.50, —0.56), there are both strong and weak stable
submanifolds within the two-dimensional stable man-
ifold. Because many invariant manifolds intersect the
origin with the same tangent direction, the weak sta-
ble submanifold is nonunique, and methods such as the
trajectory-normal repulsion rate may be used to identify
the most influential weak stable submanifold [20,30].

For this example, Fig. 10 presents the finite-time
Lyapunov exponent o7, the trajectory-normal repul-
sion rate pr, the minimum eigenvalue of the rate-of-
strain tensor S denoted by sy, and the trajectory diver-
gence rate o over the domain as a comparison of these
methods. The finite-time Lyapunov exponent o7 and
eigenvalue of the rate-of-strain tensor s both represent
measures of pure stretching, and are therefore domi-
nated by the tangential stretching. These measures both
give no structure in the system. Hyperbolic objective
Eulerian structures, as would be measured by s, must
contain an isolated local maximum or minimum of s
[35], and no such isolated maximum or minimum exists
in this example.

The two trajectory-based measures, on the other
hand, both show the structure of the system, with the
integrated measure of pr giving a more defined ridge
by taking into account longer time information.

4.2 Approximation of hyperbolic Lagrangian
coherent structures

As discussed in the introduction, in fluid flows, it can
be very useful to look at finite-time barriers to transport
in the fluid, known as Lagrangian coherent structures
(LCSs) [37].

Two key limitations of many Lagrangian methods
for detecting flow structures are the computation time
for advecting trajectories [4,6] and dealing with lim-
ited experimental data [14]. By considering an Eule-
rian (i.e., instantaneous) approximation of Lagrangian
structures, the trajectory divergence rate can provide
a first look at the structure of a given vector field. It
may even be applied to nonautonomous flows to show
the attraction and repulsion of the vector field at each
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Fig.10 Comparison of methods to extract structure from Exam-
ple 3. The scalar field calculations using a the finite-time Lya-
punov exponent [37], b the trajectory-normal repulsion rate [20],
¢ minimum eigenvalue of S from the objective Eulerian coherent

time step. Although there may be exceptions [39], in
most cases the short time transport barriers of a sys-
tem are locally attracting or repelling. Therefore, the
trajectory divergence rate may be used to approximate
Lagrangian coherent structures.

Example 4 (Data-driven ocean model.) This exam-
ple presents simulations in Fig. 11 of the ocean flow
around Martha’s Vineyard, Massachusetts in August
2017 using the MIT-MSEAS primitive-equation ocean
model [18]. With this simulation, it is possible to cal-
culate trajectories of advected ocean flow to generate
the flow map and therefore the right Cauchy-Green
tensor. The Lagrangian coherent structures are identi-
fied by calculating derivatives of the finite-time Lya-
punov exponent in the largest eigendirection of the
right Cauchy—Green tensor to find C-ridges [33]. These
quantities are calculated over a forward or backward
integration time of 2 h for repelling and attracting fea-
tures, respectively. In Fig. 11, itis clear that many of the
LCSs align with regions of high repulsion or attraction

(b) pr
0.0 q
§esli
s 2
~1.0
~10 —05 00 05 10 1
Vz
F;
(d)
0.0 0
-1
5:—0.5
-2
_1-0| T T T T _3
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Vz

structure approach [35], and d the trajectory divergence rate. a,
b were calculated by integrating trajectories over an integration
time 7 = —0.33

and generally follow the ridges of these highly attract-
ing or repulsive regions.

The trajectory divergence rate, because it measures
normal growth of normal vectors, will be most aligned
with the finite-time Lyapunov exponent, which mea-
sures maximum growth, when the direction of maxi-
mum growth occurs normal to a trajectory. In addition,
because FTLE is a time-integrated measure, LCSs will
be most easily approximated by the trajectory diver-
gence rate when the vector field is changing slowly
relative to the dynamics.

Ridges and valleys of the trajectory divergence rate
do not exactly correspond with hyperbolic LCSs, but
they can serve as an approximation for a much lower
computational cost. The trajectory divergence rate, for
large geophysical fluid flows, can prove particularly
helpful for identifying regions of interest in the flow
quickly. This can be very important in search-and-
rescue situations or may be used as the first step in,
for instance, an adaptive mesh algorithm to identify
finite-time structures [27,46].
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Fig. 11 Simulation of ocean flow around Martha’s Vineyard on
Monday, August 14,2017, at 10:00 AM EDT using the MSEAS
model [9]. Streamlines of the ocean flow are shown in gray in the
left figure. Lagrangian coherent structures calculated using C-
ridges [33] for anintegration time of 2 h are shown as solid lines in
the right figure, with attracting LCSs in blue and repelling LCSs

4.3 Repulsion rate along a limit cycle

Because the trajectory divergence rate p gives the
instantaneous attraction or repulsion of nearby trajec-
tories, it can be applied to analyze the local stability of
trajectories. For instance, it has been shown that glob-
ally attracting limit cycles may be locally repelling in
places, which has significant implications for control
[2,31]. As an example, consider the classical Van der
Pol oscillator.

Example 5 (Van der Pol oscillator.) The Van der Pol
oscillator is another slow-fast system, but the folds
along the slow manifold separate stable and unstable
branches, which admit a so-called canard explosion,
leading to a limit cycle [24,25]. The limit cycle is glob-
ally attracting, with two branches evolving along the
slow manifold and the other two moving quickly across
the system, as shown in Fig. 12.

The governing equations of the system are given by,

(33)
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in red. The trajectory divergence rate, shown in the background,
shows regions of attraction (cyan) and repulsion (orange). The
inset figure shows the trajectory divergence rate p along 41.3°N
latitude from 70.6°W to 70.3°W, marked by the points A and
B. Intersecting attracting and repelling LCSs are shown with the
blue and red vertical lines, respectively. (Color figure online)

1.0

———— > > > - — > >

Fig. 12 The phase portrait of the Van der Pol oscillator given by
Example 5, using ¢ = 0.01 and a = 0.575

with 0 < ¢ < 1 and @ € R. In this system, the slow
dynamics occur along a slow manifold near y = —x +
x3, which is the critical manifold of the system. As
the parameter a is increased from 0, the location of
the fixed point changes until a Hopf bifurcation occurs,
first forming a small limit cycle around the fold of the
slow manifold before expanding to a loop around both
fold points.
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Fig. 13 The trajectory divergence rate along the limit cycle in the Van der Pol oscillator of Example 5. Along the limit cycle, the outer
branches along the slow manifold are very attractive, but the fast branches are instantaneously repelling

Several works have shown that although a limit cycle
may be globally stable, it is not always locally sta-
ble [2,31]. That is, there may be regions of a glob-
ally attracting limit cycle which are locally repelling.
These regions may play a critical role in attempts to
control dynamics which naturally occur in an oscilla-
tory way, identifying the location along the limit cycle
trajectory most sensitive to perturbation. The trajectory
divergence rate along the trajectory, shown in Fig. 13,
provides an excellent tool for looking at this sensitivity
to perturbation along a limit cycle. In this example, it
is applied to the Van der Pol oscillator of Example 5.
The cycle is attracting for most of its space, but there
are moments, when moving across the fold point to the
opposite stable branch, when the trajectory is normally
repelling.

5 Extension to higher dimensions

With the intuition of the trajectory divergence rate
in two dimensions, this method may be extended to
higher dimensions. While the derivation used in Sect. 3
relies on the two-dimensionality of the system, an
understanding of the results of the derivation allows
for an extension of the concept to higher dimensions.
The two-dimensional trajectory divergence rate calcu-
lates the normal projection of the instantaneous rate
of deformation of the unique trajectory-normal vector
p = (n, Sn). In higher dimensions, trajectories remain
one-dimensional, so the normal direction becomes a
normal hyperplane. Therefore, in higher dimensions,

the normal projection of the instantaneous rate of defor-
mation of the normal hyperplane, N, may be written
using the analogous formula,

R = N'SN. (34)

In R¥, S is the k x k rate-of-strain tensor, still given by
S = % (Vv + Vv') and Nis the k x (k — 1) matrix rep-
resenting the hyperplane normal to the tangent vector
v. Therefore R will be of dimension k—1)x (k—1).
The eigenvalues of R give the principal trajectory
divergence rates and the eigenvectors give the direc-
tions. The maximal eigenvalue of R gives the domi-
nant attraction or repulsion of every point. The lower
eigenvalues give the dimension of this attraction.

In three dimensions, the Frenet—Serret reference
frame gives the normal plane to a trajectory y with a
tangent vector y’ and an acceleration y”. In this frame,
the normal plane is defined by two vectors: the normal
n and binormal b. The normal vector is defined to be
in the direction of change of the tangent vector e.

de

n= L

. o 2
& e

The binormal, which must be perpendicular to both the
tangent and normal vectors, can be found with their
cross-product,

b=exn. (36)
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Fig. 14 Representation of
the divergence rate in a
three-dimensional system,
R. The circle represents the
normal plane N to the
trajectory, and the ellipse
represents the slope of
normal stretching as in

Fig. 2. The eigenvalues of R
give the principal stretching
within the normal plane

The normal plane N is then defined by the normal and
binormal unit vectors,

N =[n, b]. (37)

With this definition of the normal plane in three dimen-
sions, (34) may be rewritten as,

. [m, s2> (n, Sb>} . (38)

Calculating the higher-dimensional trajectory diver-
gence rate of (34) shows the rates of stretching of the
plane normal to each trajectory. Figure 14 shows a
visualization of this interpretation. There are an infi-
nite number of vectors normal to the trajectory, so the
higher-dimensional trajectory divergence rate R mea-
sures the rates of deformation of the entire plane, and
eigenvalues of this matrix give the principal magnitudes
and directions of repulsion and attraction.

Example 6 (Supercritical Hopf bifurcation.) The
Poincaré- Andronov-Hopf, or simply Hopf, bifurcation
is one of the most fundamental to nonlinear dynamics.
Asaparameter is increased, a single fixed point reverses
its stability as a limit cycle appears. In parameter
extended phase space, the Hopf bifurcation becomes a
three-dimensional system, with the bifurcation param-
eter  representing the third dimension [42], in which
case the limit cycle is represented as a paraboloid. As
an example of the application of the three-dimensional
trajectory divergence rate R from Eq. (34), consider a
slow-fast version of the Hopf normal form, with attrac-
tion to the limit cycle moving at a faster time scale than
motion around the limit cycle. The parameter dynamics
remain trivial.

@ Springer
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For a supercritical Hopf bifurcation, u© < 0 corre-
sponds with a single stable fixed point at the origin
and p > 0 corresponds to an unstable fixed point at the
origin with an attracting limit cycle of radius /2.

Figure 15 shows the phase space for this example
for both u = —1, below the bifurcation, and © = 1,
beyond the bifurcation point, showing the appearance
of the limit cycle. Calculating the largest magnitude
eigenvalue of the three-dimensional repulsion rate R
shows the dominant attraction or repulsion at each point
in extended parameter space. The panel shows the val-
ues along the (x, u) and (y, u) planes, to represent
the three-dimensional data. Particularly of note is the
narrow dark blue region in the top half of this panel,
indicating the attracting limit cycle of the system. This
method is unable to identify the attracting line which
exists for u < 0, but is able to calculate the attract-
ing paraboloid, and shows instability in the center of
the paraboloid, with a peak closest to the center. This
example shows promise for the future application of
the trajectory divergence rate in higher dimensions.

6 Summary and conclusions

The trajectory divergence rate is an inherent property of
continuously differentiable vector fields that naturally
follows from either the instantaneous stretching of vec-
tors or the trajectory-normal repulsion rate. It measures
the rate at which the normal distance between nearby
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Fig. 15 The phase portrait for Example 6 with © = —1 and
@ =1, and results of the 3D computation of the trajectory diver-
gence rate. In the bottom left, two slices of the largest eigenvalue
of R from Eq. (34) are shown for the Hopf bifurcation in extended

trajectories grows at every position in the domain of
the vector field. It is a straightforward quantity to com-
pute, requiring only the instantaneous vector field and
its gradient, and therefore may provide a useful diag-
nostic when investigating the geometric properties of
a flow. As shown in the case of the finite-time Lya-
punov exponent [27], gradients are also computable on
unstructured meshes.

NN

2T~ ~

e - o
> 0

—r > -~

phase space as described by (39), with € = 0.25. In the bottom
right, this has been overlaid with the attracting manifold (blue)
and example trajectories. (Color figure online)

In application, the trajectory divergence rate and
divergence ratio may be applied to approximate slow
manifolds, weak stable or unstable manifolds, or hyper-
bolic Lagrangian coherent structures, or to measure the
local stability of trajectories such as limit cycles.

The trajectory divergence rate and ratio are computa-
tionally efficient and physically intuitive. These scalar
fields may become useful tools for the investigation of
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many applications in various fields. The python pack-
age ManifoldID for manifold identification, developed
for this paper, may be found on GitHub at https://github.
com/gknave/manifoldid.
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Appendix: Derivation of Eq. (17)

Starting with (15), the trajectory-normal repulsion rate,
pr can be written, to leading order in 7', as,

'S
pT=1+<tr(S)—V| |2V>T
v

=1+ |%(tr(S) VI = viSwT (40)
v

vitr(S)I — S)v
——— T
[v]
For a 2-tensor, A, the relation tr(A)I — A in index
notation may be written as A;;dx — A jk.

tr(A)L — A = A8 — Aji
= A8k — Aidikdji
= Ay (81i0jk — dikdji) 41)
= Ajigijsik
=R'AR
where ¢;; is the two-dimensional Levi-Civita symbol

which, for a 2x2 matrix, is the index representation
of the negative of the 90° counter-clockwise rotation

matrix, &;;j = —R. Therefore, for small time T, pr
may be written as,
vI(RTSR)v
TN
(42)
(Rv)'S(Rv)
=l+—
[v|

@ Springer

which can alternatively be written in terms of the unit
normal field, n = Rv/ |v|, as in (3), yielding

or =1+, Sn)T 43)

which gives the leading order behavior defined by the
instantaneous rate,

p = (n, Sn) 44)

Note that the rate of length change for an infinitesi-
mal material element vector £ based at Xy and advected
under the flow is

d €| = 1 (€, Se) (45)
e e

Thus, the leading order behavior of the trajectory-
normal repulsion rate for short time 7" can be thought
of as the rate of stretching of unit normal vectors, nor-
mal to the invariant manifold passing through xg. This
value is locally maximized along the most repulsive (or
attractive) manifolds, which provide the most influen-
tial core of phase space deformation patterns.
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