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Heteroclinic connections between periodic orbits and resonance
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In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and
resonance transitions in the planar circular restricted three-body problem. These related phenomena
have been of concern for some time in topics such as the capture of comets and asteroids and with
the design of trajectories for space missions such as theGenesis Discovery Mission. The main new
technical result in this paper is the numerical demonstration of the existence of a heteroclinic
connection between pairs of periodic orbits: one around the libration pointL1 and the other around
L2 , with the two periodic orbits having the same energy. This result is applied to the resonance
transition problem and to the explicit numerical construction of interesting orbits with prescribed
itineraries. The point of view developed in this paper is that the invariant manifold structures
associated toL1 andL2 as well as the aforementioned heteroclinic connection are fundamental tools
that can aid in understanding dynamical channels throughout the solar system as well as transport
between the ‘‘interior’’ and ‘‘exterior’’ Hill’s regions and other resonant phenomena. ©2000
American Institute of Physics.@S1054-1500~00!00402-X#
dy
y

fe
em
e

lit
fo
u

th
i-

re
ra
i-

e

is
ra-

d
um
the
the
t
n–

t-
zy
r-

to
ular

d

-

I. INTRODUCTION

A. Background and a brief overview

The three-body problem is a classic problem of astro
namics. Attempts at its solution laid the foundation for d
namical systems theory and alerted Poincare´ to the existence
of chaos within Newtonian mechanics. In this paper we of
a dynamical system explanation for the phenomenon of t
porary capture and resonant transition of Jupiter com
within a three-body context. We also explore the possibi
of using the transport mechanism discovered in this study
the design of future space missions. For a general introd
tion to the three-body problem, see Holmes1 and Simo´.2

1. Resonant transition in comet orbits

A number of Jupiter comets such asOtermaandGehrels
3 make a rapid transition from heliocentric orbits outside
orbit of Jupiter to heliocentric orbits inside the orbit of Jup
ter and vice versa. During this transition, the comet is f
quently captured temporarily by Jupiter for one to seve
orbits around Jupiter. The interior heliocentric orbit is typ
cally close to the 3:2 resonance~three revolutions around th

a!Electronic mail: koon@cds.caltech.edu
b!Electronic mail: Martin.Lo@jpl.nasa.gov
c!Electronic mail: marsden@cds.caltech.edu
d!Electronic mail: shane@cds.caltech.edu
4271054-1500/2000/10(2)/427/43/$17.00
-
-

r
-

ts
y
r

c-

e

-
l

Sun in two Jupiter periods! while the exterior heliocentric
orbit is near the 2:3 resonance~two revolutions around the
Sun in three Jupiter periods!.

An important feature of the dynamics of these comets
that during the transition, the orbit passes close to the lib
tion pointsL1 andL2 . As we recall below, the pointsL1 and
L2 are two of the five equilibrium points for the restricte
three-body problem for the Sun–Jupiter system. Equilibri
points are points at which a particle at rest relative to
Sun–Jupiter rotating frame remains at rest. Amongst
equilibrium points, the pointsL1 andL2 are the ones closes
to Jupiter, lying on either side of Jupiter along the Su
Jupiter line.

2. The relevance of invariant manifolds

Belbruno and Marsden3 attempted to develop a theore
ical understanding of the comet transitions using the ‘‘fuz
boundary’’ concept, which they viewed as ‘‘a highe
dimensional analog ofL1 and L2 .’’ On the other hand, Lo
and Ross4 began the use of dynamical systems theory
explain this same phenomenon. They used the planar circ
restricted three-body problem~PCR3BP! as the underlying
model with which to begin the investigation. They notice
that the orbits ofOtermaandGehrels 3~in the Sun–Jupiter
rotating frame! follow closely the plots of the invariant mani
folds of L1 andL2 , as in Fig. 1~Plate 1!.
© 2000 American Institute of Physics
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Having noticed this, Lo and Ross4 suggested that on
might use invariant manifold theory to study these tran
tional orbits. In the present paper we build on the insights
these works and offer a dynamical system explanation
this phenomenon of temporary capture and resonance tr
tion of Jupiter comets. A key ingredient in our work is th
existence of a new heteroclinic connection between perio
orbits aroundL1 and L2 with the same Jacobi constant~a
multiple of the Hamiltonian for the PCR3BP! and the dy-
namical consequences of such an orbit.

3. The planar circular restricted three-body problem

The comets of interest~such asOtermaandGehrels 3!
are mostly heliocentric, but the perturbations of their mot
away from Keplerian ellipses are dominated by Jupite
gravitation. Moreover, their motion is very nearly in Jup
ter’s orbital plane, and Jupiter’s small eccentricity~0.0483!
plays little role during the fast resonance transition~which is
less than or equal to one Jupiter period in duration!. The
PCR3BP is therefore an adequate starting model for illu
nating the essence of the resonance transition process. H
ever, for a more refined study, especially for the cases wh
the comets have high inclination and are not domina
solely by Jupiter, other models are needed. For additio
details, see Sec. VI.

4. Framework of the paper

The point of view developed in this paper is based on
premise that the invariant manifold structures associated
L1 and L2 periodic orbits and the heteroclinic connectio
are fundamental tools that will further the understanding
the natural transport of material throughout the solar syst

In tackling this problem, we have drawn upon som
work of the Barcelona group on the PCR3BP, in particu
Llibre, Martinez, and Simo´,5 hereafter denoted LMS. We
have also drawn heavily on works of Moser, Conley, a
McGehee on the same subject. Specific citations are g
later.

B. Heteroclinic connections and their consequences

1. Heteroclinic connection

One of the main new technical results of this paper is
numerical demonstration of aheteroclinic connectionbe-
tween a pair of periodic orbits: one around the libration po
L1 and the other aroundL2 . This heteroclinic connection
augments the homoclinic orbits associated with theL1 and
L2 periodic orbits, which were previously known to exist. B
linking these heteroclinic connections and homoclinic orb
we have found thedynamical chainswhich form the back-
bone for temporary capture and rapid resonance transitio
Jupiter comets. See Fig. 2~Plate 1!.

An interesting map that models the chaotic dynamics
the region between periodic orbits aroundL1 and L2 was
given by Henon.42

2. Existence of transition orbits

We have proved the existence of a large class of in
esting orbits near a chain which a comet can follow in
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rapid transition between the inside and outside of Jupite
orbit via a Jupiter encounter. The collection of these orbits
called adynamical channel. We also use this term whe
collections of such chains for separate three-body syste
roughly speaking, overlap and are put end to an end. We
individually label the orbits in a chain with an itinerary giv
ing their past and future whereabouts, making their class
cation and manipulation possible.

3. Numerical construction of orbits

We not only prove the existence of orbits with pr
scribed itineraries, but develop a systematic procedure
their numerical construction. This is an important part of t
program; it turns a general existence theory into a pract
technique for constructing orbits.

4. Applications to space mission design

The systematic procedures developed here could be
to design spacecraft orbits which explore a large region
space in the vicinity of the Earth~and near the Earth’s orbit!
using low-fuel controls. Behavior related to the dynamic
channels has already been observed in the trajectory
NASA’s Genesis Discovery Mission, which exhibits near-
heteroclinic motion betweenL1 and L2 in the Sun–Earth
system~Lo, Williams, et al.6!. Having a better understandin
of the underlying homoclinic–heteroclinic structures shou
allow us to construct and control spacecraft trajectories w
desired characteristics~e.g., transfer betweenL1 andL2 or-
bits, explore the region interior to Earth’s orbit and th
return to the Earth’s vicinity!. See also Refs. 34 and 35.

To give a specific illustration, these techniques can
used to construct a ‘‘Petit Grand Tour’’ of the moons
Jupiter. We can design an orbit which follows a prescrib
itinerary in its visit to the many moons~e.g., one orbit
around Ganymede, four around Europa, etc.!. See Fig. 3
~Plate 2!, where we show a preliminary example.

C. A few key features of the three-body problem
1. The planar circular restricted three-body problem

The equations of motion for the PCR3BP will be r
called below, but here we recall a few key features. Two
the bodies, which we call generically theSun and Jupiter,
have a total mass that is normalized to one. Their masses
denoted, as usual, bymS512m and mJ5m, respectively
~see Fig. 4!. These bodies rotate in the plane counterclo
wise about their common center of mass and with the an
lar velocity normalized to one. The third body, which we c
the comet or the spacecraft, has mass zero and is free
move in the plane.

Choose a rotating coordinate system so that the origi
at the center of mass and the Sun (S) and Jupiter (J) are
fixed at (2m,0) and (12m,0), respectively. Then the equa
tions of motion of the comet are an autonomous Hamilton
system of differential equations with two degrees of fre
dom. The system has a first integral called theJacobi inte-
gral ~also called the Jacobi constant!, which is a multiple of
the Hamiltonian. Following the conventions of the literatu
we shall take

Jacobi constant5223Hamiltonian.
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2. Equilibrium points and Hill’s regions

The system has three unstable collinear equilibri
points on the Sun–Jupiter line, calledL1 , L2 , and L3 ,
whose eigenvalues include one real and one imaginary p
The level surfaces of the Jacobi constant~which are also
energy surfaces! are invariant three-dimensional manifold
Our main concern here is the behavior of the orbits wh
Jacobi constant is just below that ofL2 . Recall that the
Hill’s region is the projection of this region defined by th
Jacobi integral onto position space. For this case, the H
region contains a ‘‘neck’’ aboutL1 andL2 , as shown in Fig.
5~a! ~Plate 2!. Thus, orbits with a Jacobi constant just belo
that of L2 are energetically permitted to make a tran
through the neck region from theinterior region ~inside Ju-
piter’s orbit! to the exterior region ~outside Jupiter’s orbit!
passing through theJupiter region. Part of the methodology
we develop is usefully described in terms of an analogy u
in Conley.7 While this analogy cannot replace the detail
study of the orbit structure of the PCR3BP, it does provid
helpful mental picture. Consider three bowls connected
two troughs so that, when inverted, they look like thr
mountains with two passes between them. The three bo
correspond to the interior, Jupiter, and exterior regions. T
troughs correspond to theL1 andL2 equilibrium regions.

The equations of motion of the PCR3BP can be view
as those describing the motion of a point mass sliding w
out friction on this ‘‘triple bowl.’’ Since the kinetic energy is
positive, fixing the value of the Hamiltonian function corr
sponds to limiting the height to which the mass can go. O
problem corresponds to the case where the mass can go
enough to get from one bowl to the other two with just
little room to spare in the trough.

FIG. 4. ~Color online! Equilibrium points of the planar circular restricte
three-body problem as viewed, not in any inertial frame, but in the rota
frame, where the Sun and Jupiter are at fixed positions along thex-axis.
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3. The flow near the Lagrange points L 1 and L 2

Having fixed on an appropriate energy level surface,
first study the behavior of orbits near the equilibrium poin
@see Fig. 5~Plate 2!# which, in the example above, corre
spond to the saddle points in the troughs connecting
bowls. In Sec. II, we collect the major results on the flo
near the equilibrium pointsL1 and L2 from Conley7,8 and
McGehee,9 both to set notation and for the convenience
the reader. This local study is performed using the lineari
system of the PCR3BP. With the aid of a theorem of Mos
all the qualitative results of this linearized system carry o
to the full nonlinear equations.

Pieces of stable and unstable manifolds of periodic or
aboutL1 andL2 , made up of asymptotic orbits, separate tw
types of motion: transit orbits and nontransit orbits. The
manifolds play a gate-keeping role for resonance transit
Orbits inside the tubes of these manifolds transit from o
region to another. Those outside the tubes bounce back.
observation will be used later in the numerical construct
of orbits in Sec. IV.

D. Outline of the paper and summary of the results

1. Transit orbits

The main result of Sec. II is that besides the existence
an unstableperiodic solution called aLyapunovorbit near
each equilibrium point, there are alsotransit, asymptoticand
nontransit solutions. The latter orbits are defined accordi
to whether they make a transit from one region to the oth
wind to or from the periodic solution, or come out of on
region and pass near the critical point only to fall back in
the same region. See Fig. 5~b! ~Plate 2!.

2. Homoclinic orbits and heteroclinic connections

In Sec. III and Sec. IV, we make use of the local clas
fication of orbits from Sec. II to define global classes
orbits in terms of their ultimate behavior with respect to t
equilibrium points. As dynamical systems theory suggests
understand the global dynamics of the flow, one should
amine structures such as homoclinic orbits and heterocl
connections~see, for example, Moser10!.

In this vein, we recall in Sec. III some results
McGehee,9 which proved the existence ofhomoclinic orbits
in both the interior and exterior regions, which are doub
asymptotic toL1 andL2 Lyapunov orbits, respectively.

Then we use semi-analytical methods to show the e
tence ofheteroclinic connectionsin the Jupiter region which
asymptotically connect theL1 and L2 Lyapunov orbits.
Moreover, we also show that with appropriate Jacobi c
stants, there existchains of transversal homoclinic and he
eroclinic orbits @see Fig. 2~Plate 1!#. These chains will be
used in Sec. IV to organize the distinctively different typ
of global motions. We use a semi-analytical method by co
bining symbolic and numerical techniques, which is guid
by careful analytical, geometrical, and dynamical aspects
the problem.

g



ro

a
o-
e
ic
f a
th

e

s
ai
e

ry
er
to

to
x-

p-
m
ar
r
io

e-
f
r

e

i
se
tic
ir
s

on
in
ite
J
o

pa
e,

a
rk
ro

nd
in

he

y

tant
e

a
t
the
r
ll

the
n’s
um

e
of
of

ull

ir-

in
ave

ter
he
ee
the
t the
are

e
the
tial

il-
the
ok,
s-
ial

430 Chaos, Vol. 10, No. 2, 2000 Koon et al.
3. Global orbit structure of the PCR3BP

In Sec. IV, we use the chains of homoclinic and hete
clinic orbits to construct a suitable Poincare´ map in the
neighborhood of the chain which allows us to classify
well as organize distinctively different types of global m
tions of the PCR3BP in terms of ultimate behavior with r
spect to the equilibrium points. We prove a theorem wh
gives the global orbit structure in the neighborhood o
chain. In simplified form, the theorem essentially says
following.

For any admissible bi-infinite sequenc
(...,u21 ;u0 ,u1 ,u2 ,...) of symbols$S,J,X% where S, J, and
X stand for the interior (Sun), Jupiter, and exterior region
respectively, there corresponds an orbit near the ch
whose past and future whereabouts with respect to th
three regions match those of the given sequence.

For example, given the bi-infinite sequence, or itinera
(...,S;J,X,J,...), there exists an orbit starting in the Jupit
region which came from the interior region and is going
the exterior region and returning to the Jupiter region.

We can then classify the orbits which correspond
qualitatively different varieties of global motions. For e
ample, ‘‘oscillating’’ orbits are~roughly! those which cross
from one region to the others infinitely many times; ‘‘ca
ture’’ orbits are those which cross for some amount of ti
but eventually stay in one region; and asymptotic orbits
those which eventually wind onto the periodic solution. O
bits which exhibit none of these behaviors stay in one reg
for all time and are called nontransit.

We not only prove the existence of orbits with pr
scribed itineraries, but develop a systematic procedure
their numerical construction. By following successive inte
sections of stable and unstable invariant manifolds ofL1 and
L2 Lyapunov orbit with a Poincare´ section, we can generat
regions of orbits with itineraries of arbitrary length.

4. Resonance transition

In Sec. V, we focus on a limited case of the fast dynam
cal channel transport mechanism developed in previous
tions; the case of transition between resonances. In par
lar, we study how the invariant manifolds and the
heteroclinic intersections connect the mean motion re
nances of the interior and exterior regions~e.g., the 3:2 and
2:3 Jupiter resonances! via the Jupiter region.

By numerical exploration of the heteroclinic connecti
between the interior and exterior resonances, we obta
better picture of the resonance transition of actual Jup
comets. As our example, we explain the sense in which
piter cometOtermatransitions between the 3:2 and 2:3 res
nances. We discover much about the mixed phase s
structure, especially the mean motion resonance structur
the PCR3BP.

5. Conclusion and future work

In the conclusion, we make several additional remarks
well as point out some possible directions for future wo
such as extensions to three dimensions, many body p
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lems, merging with optimal control, and the transport a
distribution of asteroids, comets, and Kuiper-belt objects
the solar system.

II. THE FLOW NEAR THE LIBRATION POINTS L 1 AND
L 2

In this section we study the behavior of orbits near t
two libration pointsL1 and L2 and particularly those orbits
whose Jacobi constantC is just below that of the critical
point L2 , that is,C,C2 . ~These points were discovered b
Euler before Lagrange discovered the Lagrange points,L4

and L5 , but it is common to callL1 and L2 the Lagrange
points despite being historically inaccurate.! The Hill’s re-
gion corresponding to such values of the Jacobi cons
contains a ‘‘neck’’ about each libration point; thus, in th
case of the Lagrange pointL1 between the two primary
massesS and J, orbits on the integral surface can make
transit~through the neck! from the vicinity of one mass poin
to the other. Our aim here is to describe how orbits in
‘‘neck’’ look. A similar study can be done for the othe
libration pointL2 . Correspondingly, in this section, we sha
use L to denote eitherL1 or L2 . We will also adopt the
convention of using script letters to refer to regions on
energy surface and italicized letters for that same regio
projection onto position space. For instance, the equilibri
regionR on the energy surface~the ‘‘neck’’ for eitherL1 or
L2) has the position space projectionR.

To obtain a good idea of the orbit structure in th
‘‘neck’’ region R, it is sufficient to discuss the equations
motion linearized near the critical point. Indeed, by virtue
Moser’s generalization of a theorem of Lyapunovall the
qualitative results of such a discussion carry over to the f
nonlinear equations.

A. The planar circular restricted three-body problem

We begin by recalling the equations for the planar c
cular restricted three-body problem~PCR3BP!. See, for ex-
ample, Abraham and Marsden11 or Meyer and Hall12 for
more information. As mentioned previously, the two ma
bodies are called generically the Sun and Jupiter, and h
masses denotedmS512m and mJ5m. They rotate in the
plane in circles counterclockwise about their common cen
of mass and with angular velocity normalized as one. T
third body, which we call the comet or the spacecraft is fr
to move in the plane and its motion does not affect that of
main bodies. Choose a rotating coordinate system so tha
origin is at the center of mass and the Sun and Jupiter
fixed on thex-axis at (2m,0) and (12m,0), respectively
~see Fig. 4!. Let (x,y) be the position of the comet in th
plane ~so these are the position coordinates relative to
positions of the Sun and Jupiter, not relative to an iner
frame!.

1. Methods of derivation

There are several ways to derive and model the Ham
tonian structure for this system, as discussed at length in
above references. For example, as in Whittaker’s bo
Abraham and Marsden11 use time dependent canonical tran
formation theory to transform the problem from an inert
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frame to a rotating frame. In this reference the Delaunay
the Poincare´ models are also discussed. A simpler techniq
is to use covariance of the Lagrangian formulation and
the Lagrangian directly in a moving frame~see Marsden and
Ratiu13!. This method directly gives the equations in L
grangian form and the associated Hamiltonian form is giv
by the Legendre transformation.

2. The planar circular restricted three-body problem
model (PCR3BP)

After going through the aforementioned procedure, o
finds that the new Hamiltonian function is given by

H5
~px1y!21~py2x!2

2
2

x21y2

2
2

12m

r 1
2

m

r 2

2
m~12m!

2
, ~2.1!

where

r 15A~x1m!21y2 and r 25A~x211m!21y2.

The relationship between the momenta and the velocities
a result of either the Legendre transformation~if one is tak-
ing a Lagrangian view! or of Hamilton’s equations:

ẋ5
]H

]px
5px1y; ẏ5

]H

]py
5py2x. ~2.2!

The remaining dynamical equations are

ṗx52
]H

]x
5py2x1Vx ; ṗy52

]H

]y
52px2y1Vy ,

~2.3!

where

V5
x21y2

2
1

12m

r 1
1

m

r 2
1

m~12m!

2
,

and whereVx , Vy are the partial derivatives ofV with
respect to the variablesx,y.

On the Lagrangian side we write the equations in ter
of the velocities; that is, we make the transformationẋ5px

1y, ẏ5py2x, where ẋ, ẏ correspond to the velocity in
the rotating coordinate system. Then the equations can
rewritten in second order form as

ẍ22ẏ5Vx , ÿ12ẋ5Vy . ~2.4!

This form of the equations of motion has been studied
detail in Szebehely14 and may be more familiar to the as
tronomy and astrodynamics communities. Equations~2.4!
are called the equations of the planar circular restricted th
body problem~PCR3BP!. They have a first integral calle
the Jacobi integral, which is given by

C~x,y,ẋ,ẏ!52~ ẋ21 ẏ2!12V~x,y!522E~x,y,ẋ,ẏ!.
~2.5!

We shall useE when we regard the Hamiltonian~which is
not the kinetic plus potential energy! as a function of the
positions and velocities andH when we regard it as a func
tion of the positions and momenta.
d
e
e

n

e

re

s

be

n

e-

3. Equilibrium points

The system~2.4! has five equilibrium points, three col
linear ones on thex-axis, calledL1 , L2 , L3 and two equi-
lateral points calledL4 , L5 ~see Fig. 4!. These equilibrium
points are critical points of the~effective potential! function
V. The value of the Jacobi integral at the pointLi will be
denoted byCi .

B. Linearization near the colinear equilibria

Studying the linearization of the dynamics near the eq
libria is of course an essential ingredient for understand
the more complete nonlinear dynamics.

To find the linearized equations around the coline
Lagrange pointL with coordinates (k,0), we need the qua
dratic terms of the HamiltonianH in Eq. ~2.1! as expanded
about (k,0). After making a coordinate change with (k,0) as
the origin, these quadratic terms form the Hamiltonian fun
tion for the linearized equations, which we shall callHl ,

Hl5
1
2 $~px1y!21~py2x!22ax21by2%, ~2.6!

wherea andb are defined bya52r11, andb5r21 and
where

r5muk211mu231~12m!uk1mu23.

A short computation gives the linearized equations in
form

ẋ5
]Hl

]px
5px1y, ṗx52

]Hl

]x
5py2x1ax,

~2.7!

ẏ5
]Hl

]py
5py2x, ṗy52

]Hl

]y
52px2y2by,

To make the computations easier and to give the v
ables simpler geometric meaning, let us introduce the tra
formation: vx5px1y, vy5py2x, where vx , vy corre-
spond to velocity in the rotating coordinate system. T
transformed equations are then given by

ẋ5vx , v̇x52vy1ax,
~2.8!

ẏ5vy , v̇y522vx2by,

which is the linearization of the equations~2.4! around the
equilibrium point.

The integralHl of ~2.6! now appears as

El5
1
2 ~vx

21vy
22ax21by2!, ~2.9!

which corresponds to the energy integral@E of ~2.5!# of the
restricted problem. Notice that the zero-surface of the in
gral El corresponds to the Jacobi integral surface wh
passes through the libration point. We shall therefore st
solutions of Eqs.~2.8! on the surfaceEl5E.0 which corre-
sponds to the case where the Hill’s region contains a n
about the libration point.

We remark that this derivation is good for any of th
three colinear libration points, though the value ofr will not
be the same for each point. With a mass ratio like that
Jupiter to the Sun, wherem50.0009537, the values ofa and
b are approximately
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a59.892, b53.446 for L1 and

a58.246, b52.623 for L2 ,

respectively.

C. The geometry of solutions near the libration point

Now we analyze the linearized equations~2.8!. It is
straightforward to find that the eigenvalues of this linear s
tem have the form6l and6 in, wherel andn are positive
constants. The corresponding eigenvectors are

u15~1,2s,l,2ls!,

u25~1,s,2l,2ls!,

w15~1,2 i t,in,nt!,

w25~1,i t,2 in,nt!,

wheres and t are constants. To better understand the o
structure on the phase space, we make a linear chang
coordinates with the eigenvectors,u1 , u2 , w1 , w2 , as the
axes of the new system. Using the corresponding new c
dinatesj, h, z1 , z2 , the differential equations assume th
simple form

j̇5lj, ż15nz2 ,
~2.10!

ḣ52lh, ż252nz1 ,

and the energy function~2.9! becomes

El5ljh1
n

2
~z1

21z2
2!. ~2.11!

Solutions of the equations~2.10! can be conveniently written
as

j~ t !5j0elt, h~ t !5h0e2lt,
~2.12!

z~ t !5z1~ t !1 i z2~ t !5z0e2 int,

where the constantsj0, h0 and z05z1
01 i z2

0 are the initial
conditions. These linearized equations admit integrals in
dition to the energy function~2.11!; namely, the functionshj
and uzu25z1

21z2
2 are both constant along solutions.

1. The phase space

For positiveE andc, the regionR, which is determined
by

El5E and uh2ju<c, ~2.13!

is homeomorphic to the product of a two-sphere and an
terval; namely, for each fixed value ofh2j between2c and
c, we see that the equationEl5E determines the two-sphere

l

4
~h1j!21

n

2
~z1

21z2
2!5E1

l

4
~h2j!2.

The bounding sphere ofR for which h2j52c will be
calledn1 , and that whereh2j5c, n2 @see Fig. 6~Plate 3!#.
We shall call the set of points on each bounding sph
whereh1j50 theequator, and the sets whereh1j.0 or
h1j,0 will be called thenorth and south hemispheres,
respectively.
-

it
of

r-

d-

-

e

2. The flow in R

To analyze the flow inR one simply considers the pro
jections on the~h,j!-plane andz-plane, respectively. In the
first case we see the standard picture of an unstable cri
point, and in the second, of a center. Figure 6~Plate 3! sche-
matically illustrates the flow in the~h,j!-plane. The coordi-
nate axes have been tilted by 45° in order to correspon
the direction of the flow in later figures. With regard to th
first projection we see thatR itself projects to a set bounde
on two sides by the hyperbolahj5E/l @corresponding to
uzu250; see~2.11!# and on two other sides by the line se
ments h2j56c, which correspond to the boundin
spheres.

Sincehj is an integral of the equations inR, the pro-
jections of orbits in the~h,j!-plane move on the branches o
the corresponding hyperbolashj5constant, except in the
casehj50 ~whereh50 or j50). If hj.0, the branches
connect the bounding line segmentsh2j56c and if hj
,0, they have both end points on the same segment. A ch
of Eq. ~2.12! shows that the orbits move as indicated by t
arrows in Fig. 6~Plate 3!.

To interpret Fig. 6~Plate 3! as a flow inR, notice that
each point in the projection corresponds to a circle inR
given by the ‘‘radius’’ variabler5uzu25constant. Recall
from ~2.11! that uzu25(2/n) (E2lhj). Of course, for points
on the bounding hyperbolic segments (hj5E/l), the con-
stant is zero so that the circle collapses to a point. Thus,
segments of the linesh2j56c in the projection corre-
spond to the two-spheres boundingR. This is because eac
corresponds to a circle crossed with an interval where
two end circles are pinched to a point.

We distinguish nine classes of orbits grouped into
following four categories.

~1! The pointj5h50 corresponds to aperiodic orbit in R
~the Lyapunov orbit!. See the black dot at the center
Fig. 6 ~Plate 3!.

~2! The four half open segments on the axes,hj50 ~or
equivalentlyuzu25r* wherer* 52E/n), correspond to
four cylinders of orbits asymptotic to this periodic sol
tion either as time increases (j50) or as time decrease
(h50). These are calledasymptoticorbits. See the four
green orbits of Fig. 6~Plate 3!.

~3! The hyperbolic segments determined byhj5constant
.0 ~or equivalentlyuzu2,r* ) correspond to two cylin-
ders which crossR from one bounding sphere to th
other, meeting both in the same hemisphere; the no
one if they go fromh2j51c to h2j52c, the south
one in the other case. Since these orbits transit from
region to another, we call themtransit orbits. See the
two red orbits of Fig. 6~Plate 3!.

~4! Finally the hyperbolic segments determined byhj
5constant,0 (uzu2.r* ) correspond to two cylinders
of orbits in R each of which runs from one hemisphe
to the other hemisphere on the same bounding sph
Thus if j.0, the sphere isn1 (h2j52c) and orbits
run from the south (h1j,0) to the north (h1j.0)
hemisphere while the converse holds ifj,0, where the
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sphere isn2 . Since these orbits return to the same
gion, we call themnontransit orbits. See the two blue
orbits of Fig. 6~Plate 3!.

3. McGehee representation

McGehee,9 building on the work of Conley,8 proposed a
representation which makes it easier to visualize the reg
R. Recall thatR is homeomorphic toS23I . In McGehee9 it
is represented by a spherical annulus, as shown in Fig.~b!
~Plate 3!.

Figure 7~a! ~Plate 3! is a cross-section ofR. Notice that
this cross-section is qualitatively the same as the illustra
in Fig. 6 ~Plate 3!. The full picture@Fig. 7~b! ~Plate 3!# is
obtained by rotating this cross-section, about the indica
axis v. The following classifications of orbits correspond
the previous four categories.

~1! There is an unstableperiodic orbit l in the regionR
corresponding to the pointq.

~2! Again let n1 , n2 be the bounding spheres of regionR,
and letn denote eithern1 or n2 . We can dividen into
two hemispheres:n1, where the flow entersR, andn2,
where the flow leavesR. We let a1 and a2 ~where
uzu25r* ) be the intersections withn of the cylinders of
orbits asymptoticto the unstable periodic orbitl . Then
a1 appears as a circle inn1, anda2 appears as a circle
in n2.

~3! If we let d1 be the spherical cap~whereuzu2,r* in n1

bounded bya1, then thetransit orbits enteringR on d1

exit on d2 of the other bounding sphere. Similarly, le
ting d2 (uzu2,r* ) be the spherical cap inn2 bounded
by a2, the transit orbits leaving ond2 have come from
d1 on the other bounding sphere.

~4! Note that the intersectionb of n1 andn2 is a circle of
tangency points. Orbits tangent at this circle ‘‘boun
off,’’ i.e., do not enterR locally. Moreover, if we letr 1

be a spherical zone which is bounded bya1 andb, then
nontransitorbits enteringR on r 1 ~whereuzu2.r* ) exit
on the same bounding sphere throughr 2 ~where uzu2

.r* ) which is bounded bya2 andb.

The key observation here is that the asymptotic orb
are pieces of the stable and unstable manifold ‘‘tubes’’ of
Lyapunov orbit and they separate two distinct types of m
tion: transit orbits and nontransit orbits. The transit orb
passing from one region to another, are those inside the
lindrical manifold tube. The nontransit orbits, which boun
back to their region of origin, are those outside the tube. T
observation will be important for the numerical constructi
of interesting orbits in Sec. IV.

D. The flow mappings in the equilibrium region of the
energy surface

We now observe that on the two bounding spheres, e
of the hemispheresn6 is transverse to the flow. It follows
that the flow inR defines four mappings — two betwee
pairs of spherical capsd6 and two between pairs of spheric
zonesr 6:
-

n

n

d

s
e
-
,
y-

is

ch

c1 :d1
1→d2

2 , c2 :d2
1→d1

2 , ~2.14!

c3 :r 1
1→r 1

2 , c4 :r 2
1→r 2

2 . ~2.15!

The four mappings are diffeomorphisms. Furthermore,
these mappings preserve the ‘‘radius’’ variabler5uzu2 since
this is an integral inR.

1. The infinite twisting of the mappings

After computing from the solution~2.12! that

d

dt
argz52n, ~2.16!

we see that the change in the argument ofz for each of these
mappingsc i is approximately proportional to the negative
the time required to go from domain to range. Also, this tim
approaches infinity as the flow approaches the cir
a1 (uzu2→r* ), since on the circlea1 ~whereuzu25r* ) the
orbits are asymptotic to the unstable periodic solutionl .

These facts imply that arbitrary circles with radius va
abler5uzu2 in the domain of the mappings are rotated by
amount that decreases to minus infinity asr→r* . Hence,
the behavior of the flow inR should be obtained by addin
some spiraling to the arrows given in Fig. 7~b! ~Plate 3!.

In Sec. IV, we shall need a simple geometric con
quence of the above observation on spiraling stated in te
of ‘‘abutting arcs’’ in the domain, or range, ofc i . Namely,
an arc lying in the closure of one of these sets (d6 and r 6)
is called an abutting arc if it is in the set itself except for o
end point in the circlea6. See Fig. 8~Plate 4!. For example,
let g1 be an abutting arc in the domaind1

1 of c1 with one
end pointP1 in a1

1 . Let d1 be another abutting arc in th
ranged2

2 of c1 such that one of its end pointsQ1 is in a2
2 .

Then c1(g1) is an arc spiraling towardsa2
2 and cuttingd1

an infinite number of times in any neighborhood of the po
of abutmentQ1 .

This follows directly from the infinite twisting of the
mappingsc1 ; namely the image ofg1 spirals infinitely
many times around and down toa2

2 in the range.
Similarly, let g i be an abutting arc in the domain ofc i

with one end pointPi in a2
1 , a1

1 , a2
1 for i 52, 3,4, respec-

tively. Let d i be another abutting arc in the range ofc i such
that one of its end pointsQi is in a1

2 , a1
2 , a2

2 , respec-
tively. Then c i(g i) is an arc spiraling towards
a1

2 , a1
2 , a2

2 , respectively, and cuttingd i an infinite num-
ber of times in any neighborhood of the point of abutme
Qi .

E. Orbits in the equilibrium region of position space

After studying the orbit structure in the equilibrium re
gion R and its projection on the~h,j!-plane, we now exam-
ine briefly the appearance of orbits in position space, tha
in the (x,y)-plane.

Recall from Sec. II C that thej andh coordinate axes are
the eigenvectorsu15(1,2s,l,2ls) and u25(1,s,2l,
2ls), respectively. Their projection on the (x,y)-plane,
ū15(1,2s) and ū25(1,s), plays an important role in the
study of the appearance of orbits on the position space.
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The image of a tilted projection ofR on the (x,y)-plane
provides the right mental picture. To build physical intuitio
regarding the flow in the equilibrium region, it is importa
to study the projection of the different classes of orbits on
(x,y)-plane. Here, we summarize the main results
Conley.8

Recall from Sec. II C that the eigenvalues of the line
system~2.8! are6l and6 in with corresponding eigenvec
tors u1 , u2 , w1 , w2 . Thus, the general~real! solution has
the form

v~ t !5„x~ t !,y~ t !,ẋ~ t !,ẏ~ t !…

5a1eltu11a2e2ltu212 Re~beintw1!, ~2.17!

wherea1 , a2 are real andb5b11 ib2 is complex. Notice
that ~2.17!, while slightly more complicated, is essential
the same as~2.12!.

Upon inspecting this general solution, we see that
solutions on the energy surface fall into different classes
pending upon the limiting behavior ofx(t) @thex coordinate
of v(t)# as t tends to plus or minus infinity. Notice that

x~ t !5a1elt1a2e2lt12~b1 cosnt2b2 sinnt !. ~2.18!

Thus, if t→1`, then x(t) is dominated by itsa1 term.
Hence,x(t) tends to minus infinity~staying on the left-hand
side!, is bounded~staying around the equilibrium point!, or
tends to plus infinity~staying on the right-hand side! accord-
ing to a1,0, a150, a1.0. See Fig. 9~Plate 4!. The same
statement holds ift→2` and a2 replacesa1 . Different
combinations of the signs ofa1 anda2 will give us again the
same nine classes of orbits which can be grouped into
same four categories.

~1! If a15a250, we obtain aperiodic solution which is a
Lyapunov orbit. It has been proven in Conley8 that this
periodic orbit projects onto the (x,y)-plane as an ellipse
with major axis of length 2tAE/k in the direction of the
y-axis, and minor axis of length 2AE/k in the direction
of the x-axis. The orientation of the orbit is clockwise
Herek (52a1bt21n21n2t2) is a constant. See Fig
9 ~Plate 4!. Note that the size of the ellipse goes to ze
with E.

~2! Orbits with a1a250 are asymptoticorbits. They are
asymptotic to the periodic Lyapunov orbit. It has be
proven in Conley8 that the asymptotic orbits witha1

50 project into the stripS1 in the xy-plane centering
aroundū2 and bounded by the lines

y5sx62AE~s21t2!/k. ~2.19!
Similarly, asymptotic orbits witha250 project into the
strip S2 centering aroundū1 and bounded by the lines

y52sx62AE~s21t2!/k. ~2.20!
Notice that the width of the strips goes to zero withE.

~3! Orbits with a1a2,0 are transit orbits because they
cross the equilibrium regionR from 2` ~the left-hand
side! to 1` ~the right-hand side! or vice versa.

~4! Orbits with a1a2.0 arenontransitorbits.

To study the projection of these last two categories
orbits, Conley8 proved a couple of propositions which allo
e
f

r

e
e-

e

f

one to determine at each point (x,y) the ‘‘wedge’’ of veloci-
ties ~if any! in which a1a2,0. See the shaded wedges
Fig. 9 ~Plate 4!. Since a detailed study will draw us too fa
afield, we simply state some of the main observations.

In Fig. 9 ~Plate 4!, S1 and S2 are the two strips men
tioned above. Outside of each stripSi , i 51,2, the sign ofa i

is independent of the direction of the velocity. These sig
can be determined in each of the components of the equ
rium regionR complementary to both strips. For example,
the left-most central components, botha’s are negative,
while in the right-most central components botha’s are posi-
tive. Therefore,a1a2.0 in both components and only non
transit orbits project onto these two components.

Inside the strips the situation is more complicated sin
in Si , i 51,2, the signs ofa i depend on the direction of th
velocity. For simplicity we have indicated this dependen
only on the two vertical bounding line segments in Fig.
~Plate 4!. For example, consider the intersection of stripS1

with the left-most vertical line. On the subsegment so o
tained there is at each point a wedge of velocity in whicha1

is positive. The sign ofa2 is always negative on this subse
ment, so that orbits with velocity interior to the wedge a
transit orbits (a1a2,0). Of course, orbits with velocity on
the boundary of the wedge are asymptotic (a1a250), while
orbits with velocity outside of the wedge are nontrans
Here, only a transit and asymptotic orbit are illustrated. T
situation on the remaining three subsegments is similar.

1. The flow in the equilibrium region

In summary, the phase space in the equilibrium reg
can be partitioned into four categories of distinctly differe
kinds of motion@see Figs. 5~Plate 2! and 9 ~Plate 4!#: the
periodic Lyapunov orbits, asymptotic orbits, transit orbi
and, finally, nontransit orbits.

III. EXISTENCE OF HOMOCLINIC ORBITS AND
HETEROCLINIC CONNECTIONS

As mentioned earlier, near the equilibrium pointL ~i.e.,
L1 or L2), there exists a family of unstable periodic orbi
called Lyapunov orbits. For appropriate values of the Jac
constant, the energy surface contains exactly one of th
periodic solutions around each Lagrange point. As dyna
cal systems theory suggests~see, for example, Wiggins15!, to
understand fully the global dynamics of the flow, one sho
examine structures like homoclinic orbits and heterocli
connections to theseL1 andL2 Lyapunov orbits.

The local structure of orbits near the libration poin
gives periodic orbits~the Lyapunov orbits!, pieces of the
stable and unstable manifolds of these periodic orbits
transit and nontransit orbits. In this section, we explore h
these local structures are connected globally. Our goal i
show how homoclinic orbits in the interior region are co
nected to the homoclinic orbits in the exterior region by
heteroclinic cycle in the Jupiter region. The union of the
three structures is called achain.

The story is completed only in Sec. IV when this d
namical chain structure is used to show the existence of c
plex and interesting trajectories, some of which have b
observed in actual comet trajectories.
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In more detail, in this section we discuss the followin
topics.

~1! In Sec. III A and Sec. III B, we shall first discuss some
the results in Conley8 and McGehee,9 which have proven
the existence ofhomoclinicorbits in both the interior and
exterior regions. These are the orbits which are both
ward and backward asymptotic to the unstable Lyapu
orbit. The heart of the proof is the construction of
function which counts the number of times an orbit se
ment with endpoints near the Lyapunov orbit win
around a solid torus.

~2! We shall discuss in Sec. III C the main results in LM5

on the transversality of the invariant manifolds for theL1

Lyapunov orbit. In dynamical systems theory, the pro
erty of being doubly asymptotic to a periodic orbit
described~and more quantitatively handled! by saying
that the orbit is in both thestableandunstablemanifold
of the periodic orbit, or that the homoclinic orbit is in th
intersection of the stable and unstable manifolds of
periodic orbit. One of the most important issues whi
arises in this context is the transversality of the inters
tion. The presence of transversality will allow us to dra
many profound conclusions about the orbit structure
the system under study. Since neither Conley8 nor
McGehee9 ~see also 38, 39, and 41! was able to settle
this issue, LMS5 spent their major effort in proving ana
lytically that the intersection is indeed transversal un
appropriate conditions, at least in the interior region. W
shall summarize their results.

However, it should be clear from the start that bo
Theorems 3.3 and 3.4 have been cited only for guida
on how to construct the transversal homoclinic orb
numerically. In Sec. III D we shall use the sem
analytical methods developed by the Barcelona group
Gómez, Jorba, Masdemont, and Simo´16 to show numeri-
cally the existence of transversal homoclinic orbits
both the interior and exterior regions.

~3! In Sec. III E we shall use similar semi-analytical met
ods to show numerically the existence of transversalhet-
eroclinic connections in the Jupiter region which conne
asymptotically theL1 andL2 Lyapunov orbits. A hetero-
clinic orbit is an orbit lying in the intersection of th
stable manifold of one periodic orbit and the unsta
manifold of another periodic orbit. Since the PCR3BP
a Hamiltonian system with two degrees of freedom,
energy manifold is three dimensional. From the work
Conley, it was known that both the stable and unsta
manifolds of the Lyapunov orbits aroundL1 andL2 are
two dimensional. Hence, a dimension count sugge
but does not prove, the existence of such a heterocl
connection. Careful numerical investigations allow us
show this connection is indeed present, as well as
isolate and study it.

Also, in dynamical systems theory, a heteroclinic or
generally does not provide a mechanism for a part of
phase space to eventually return near to where it star
But two ~and more! heteroclinic orbits forming a cycle
f
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may provide this mechanism and generate extrem
complicated dynamics. This is indeed the case for
PCR3BP.

~4! In Sec. III F, we shall numerically show that, within a
appropriate range of Jacobi constant, there exist ch
of two homoclinic orbits and a symmetric heteroclin
cycle, as in Fig. 2~Plate 1!. The existence of these chain
will be used in Sec. IV to construct a suitable Poinca´
map which will allow us to classify as well as organiz
distinctively different types of global motions of th
PCR3BP in terms of ultimate behavior with respect
the equilibrium points.

A. The flow mappings in the interior and exterior
regions of the energy surface

1. Energy surface and Hill’s region

We consider Eqs.~2.4! on the energy surface given b
setting the Jacobi integral~2.5! equal to a constant. LetM
be that energy surface, i.e.,

M~m,C!5$~x,y,ẋ,ẏ!uC~x,y,ẋ,ẏ!5constant%. ~3.1!

The projection of this surface onto position space is calle
Hill’s region,

M ~m,C!5$~x,y!uV~x,y!>C/2%. ~3.2!

The boundary ofM (m,C) is the zero velocity curve. The
comet can move only within this region in the (x,y)-plane.
For a givenm there are five basic configurations for th
Hill’s region, the first four of which are shown in Fig. 10.

Case 5 is where the comet is free to move in the en
plane. In this paper, our main interest is in case 3; but
comparison we shall occasionally bring up case 2 which
the main focus of LMS.9 The shaded region is where th
motion is forbidden. The small oval region on the right is t
Jupiter region. The large near circular region on the left
the interior region surrounding the Sun. The region whic
lies outside the shaded forbidden region is theexterior re-
gion surrounding the Sun~and Jupiter!.

The values ofC which separate these five cases will
denotedCi , i 51, 2,3,4 which are the values correspondi
to the equilibrium points. These values can be easily ca
lated for smallm and their graphs are shown in Fig. 11. F
case 3, the Jacobi constant lies betweenC2 andC3 which are
the Jacobi constants of the libration pointsL2 and L3 , re-
spectively. In this case, the Hill’s region contains a ne
around bothL1 and L2 and the comet can transit from th
interior region to the exterior region and vice versa.

2. Orbit segments winding around a solid torus

In McGehee,9 the energy surface is broken up furth
into regions bounded by invariant tori. These invariant t
project onto the darkly shaded annuli shown for case 3
Fig. 12.

These annuli separate the Hill’s region into sections c
responding to the invariant regions in the energy surface.
interesting to note that for all of these cases the Sun
Jupiter are separated from each other by an invariant to
~although we show only case 3!, thus making it impossible
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FIG. 10. Four basic configurations o
the Hill’s region.
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for the comet to pass from the Sun to Jupiter. Similarly,
two masses are separated from infinity by an invariant to
We consider the regions of the energy surface projectin
the area between the two darkly shaded annuli,A1 andA2 ,
i.e., the region containing Jupiter. The theorems of McGe
below show that all orbits leaving the vicinity of one of th
unstable periodic orbits proceed around the annulusT1 or T2

FIG. 11. The partition of the (m,C)-plane into five types of Hill’s regions.
e
s.
to

e

before returning to that vicinity. The direction of processi
is the same for all orbits, counterclockwise in the inter
region and clockwise in the exterior region. In Sec. II, w
have studied the regions near the unstable periodic orbit
obtain a qualitative picture of the asymptotic orbits. We sh
combine this picture of asymptotic orbits with the fact th
orbits in the tori wind around in one directionto construct
homoclinic orbitsin both the interior and exterior regions
See Fig. 12~b!.

Theorems of McGehee: To precisely state the theorem
we must first divide up the Hill’s region and the energ
surface. We know that for smallm the two equilibrium points
occur at a distancem̃ on either side of Jupiter with

m̃5
2m1/3

3
.

We isolate these points by drawing vertical lines on ea
side of them, i.e., lines at (12m6c1m̃,0) and (12m
6b1m̃,0), whereb1,1,c1 . This divides the Hill’s region
into five sets as shown in Fig. 13.

Let S and J be the regions that contain the Sun a
Jupiter; let regionR1 and regionR2 be those parts that con
tain the two equilibrium pointsL1 andL2 , respectively; and
let X be the region that lies exterior to the orbit of Jupite
We also divide the energy surfaceM into sets projecting
onto the regions shown in Fig. 13. As before, we keep
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FIG. 12. ~Color online! ~a! The pro-
jection of invariant tori ~darkly
shaded! on position space for case 3
~b! Homoclinic orbits in the interior
and exterior regions.
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same name: e.g., regionR1 for the set in the energy surfac
whose projection is the regionR1 in the position space
Theorem 3.1 leads to the assertion thatone can choose the
division described above so that we simultaneously have
ficient control of the flow in both regionsS and R1 to con-
struct a homoclinic orbit. Theorem 3.2 makes the same
sertion for regionsX and R2 .

The analysis of regionsR1 andR2 is of a local nature.
In fact, we limit ourselves to those values of the Jacobi c
stant for which the linearized equations about the equi
rium point give us the qualitative picture of the flow. Th
flow for the linearized equations was already analyzed
some detail in Sec. II.

We know that forb1 andc1 close to 1, i.e., for the region
R close to the periodic orbit, the flow inR ~which stands for
both R1 andR2) is that shown in Fig. 7~Plate 3!. But we
also know that we cannot makec1 arbitrarily large without
disturbing this qualitative picture forR. On the other hand
we would like to makec1 large enough to obtain accura
estimates on the behavior of the flow inS and X. The fol-
lowing theorems show that there exists ac1 which allows us
to balance these two factors.

Theorem 3.1: There exist constants b1 and c1 and an
open set O1 in the (m,C)-plane (see Fig. 14) containing th
graph of C5C1(m) for small m.0 such that, for(m,C)
PO1 , we have the following.

FIG. 13. ~Color online! Division of Hill’s region into five sets.
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~1! The energy surfaceM(m,C) contains an invariant torus
separating the Sun from Jupiter.

~2! For C,C1(m), the flow inR1(m,C) is qualitatively the
same as the flow for the linearized equations. [See Fig
(Plate 3)].

~3! If we letT1 be that submanifold ofM co-bounded by the
invariant torus and n1 (see Fig. 14), then there exists a
function
u:T1→R,
such that~a! u is a meridional angular coordinate for
T1 ; ~b! u is strictly increasing along orbits.

Theorem 3.2: There exist constants b1 and c1 and an
open set O2 in the (m,C)-plane containing the graph of C
5C2(m) for smallm.0 such that, for(m,C)PO2 , we have
the following.

~1! The energy surfaceM(m,C) contains an invariant torus
separating the Sun and Jupiter from infinity.

~2! For C,C2(m), the flow inR2(m,C) is qualitatively the
same as the flow for the linearized equations. [See Fig-
ure 7 (Plate 3)].

~3! If we letT2 be that submanifold ofM co-bounded by the
invariant torus and n2 , then there exists a function
u:T2→R,
such that~a! u is a meridional angular coordinate for
T2 ; ~b! u is strictly increasing along orbits.

B. The existence of orbits homoclinic to the
Lyapunov orbit

Part ~3! of the above theorems gives us the followin
properties for the flow inT whereT stands for eitherT1 or
T2 . The increase inu along an orbit segment inT with end-
points in the bounding spheren is close to a nonzero intege
multiple of 2p. The increase inu along any other orbit seg
ment which can be deformed to the first, keeping both e
points in the bounding spheren, is close to the same intege
multiple of 2p. Furthermore, the increase ofu along any
orbit segment remaining for an arbitrarily long time inT is
arbitrary large. As will be shown, these are precisely
properties we need to carry out the proof of the existence
a homoclinic orbit.
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FIG. 14. ~Color online! ~a! Open set O1 in the
(m,C)-plane.~b! The invariant torus.
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1. A dichotomy

We assert thateither a transverse homoclinic orbit ex
ists, or ‘‘total degeneracy’’ occurs. Total degeneracy is the
case when every orbit asymptotic to the unstable perio
orbit at one end is also asymptotic at the other end and he
is a homoclinic orbit. In other words, the total degenera
situation occurs when the stable and unstable manifold
the Lyapunov orbit coincide with each other. In either eve
we conclude the existence of a homoclinic orbit. We sh
sketch the proof below for completeness. For more deta
see Conley8 and McGehee.9

Assume that total degeneracy does not occur. The
step of the proof is to find an orbit segment inT1 connecting
eitherd1

2 to a1
1 or a1

2 to d1
1 as follows. See Fig. 15. SinceT1

is compact and our flow, which is Hamiltonian, preserve
nondegenerate area element, we can conclude that some
which crossesR1 ~and the bounding spheren1) and so enters
T1 must also leaveT1 and recrossR1 ~andn1) the other way.
See Fig. 15. Therefore, for some pointpPd1

2 of n1 , there is
an orbit segment connectingp to a pointqPd1

1 of n1 . Re-
call that inR1 , the spherical capsd1

2 andd1
1 are where the

flow crossesn1 .
Starting with this orbit segment connectingp to q, we

can find an orbit segment connecting eitherd1
2 to a1

1 or a1
2

to d1
1 as follows. Letg be an arc ind1

2 linking p to a1
2

~wheregùa1
2 is not on a homoclinic orbit!. If all of g is

carried by the flow to the spherical capd1
1 , then we shall

have an orbit segment with one endpoint ina1
2 and the other

in d1
1 . Otherwise, starting fromp, there is some maxima

initial half-open subarcg8 of g which is carried by the flow

FIG. 15. ~Color online! The existence of orbits homoclinic to the Lyapuno
orbit.
ic
ce
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rbit

to d1
1 . Let r be the first point ofg not in g8, then the orbit

segment with one endpoint atr must become arbitrarily long
But the only way this orbit segment can become arbitra
long is to approach the asymptotic set, since the numbe
times it can wind aroundT1 is finite and therefore must con
tain an arbitrarily long subsegment inR1 . Because of our
knowledge of the flow inR1 , we know that long orbit seg-
ments inR1 must lie close to the cylinders of asymptot
orbits and thereforer must be carried toa1

1 . Hence, in either
case we conclude that there is an orbit segment connec
the setd1

6 in one hemisphere to the set of asymptotic orb
in the other.

Now, without loss of generality, we can suppose that
have found an orbit segment with one endpoint, calleda, in
a1

2 and the other ind1. We now choose forg the whole set
a1

2 . Using arguments similar to the above, we can conclu
that either all ofa1

2 is carried by the flow insided1
1 , or there

exists a pointbPa1
2 such that the orbit segment withb as an

endpoint becomes asymptotic at the other end. If the fi
possibility holds, we would have a map ofd2 to the interior
of d1, contradicting area preservation of Hamiltonian flo
Thus we have proven that either transversal homoclinic
bits exist or total degeneracy occurs for the interior regi
The same proof also works for the exterior region.

C. The existence of transversal homoclinic orbits in
the interior region

Conley8 and McGehee9 did not settle the issue of whe
one has transversality of the homoclinic orbit families for t
PCR3BP. Subsequently, LMS5 devoted their major effort to
show that under appropriate conditions, the invariant ma
folds of theL1 Lyapunov orbits do meet transversally. In th
section, we shall summarize their analytical results. Mo
over, in Sec. III D we shall also use the tools of Go´mez,
Jorba, Masdemont, and Simo´16 to explore numerically the
existence of transversal homoclinic orbits in both the inter
and exterior regions.

To state the major analytical results of LMS,5 we first
need to set up some notation. As mentioned earlier, neaL1

and for values ofC1.C.C2 ~case 2! there is a family of
unstable Lyapunov orbits. WhenC approachesC1 from be-
low, the periodic orbit tends toL1 . There are one-
dimensional invariant stable,WL1

s , and unstable,WL1

u , mani-

folds associated toL1 . In a similar way theL1 Lyapunov
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FIG. 16. ~Color online! ~a! Projection of the interior branch of the manifoldWL1

u on the position space.~b! First intersection~Poincare´ ‘‘cut’’ ! G1
u,S of the

interior branch ofWL1 ,p.o.
u with the planey50 in the regionx,0.
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orbit has two-dimensional invariant manifoldsWL1 ,p.o.
s ,

WL1 ,p.o.
u , locally diffeomorphic to cylinders. We recall that

homoclinic orbit related to an equilibrium pointL or to a
periodic orbit L̄ is an orbit which tends toL ~or L̄) as
t→6`. Therefore, it is on the stable and unstable invari
manifolds of the related object (L or L̄). A homoclinic orbit
is called transversal if at some point of the orbit the tang
spaces to the stable and unstable manifolds at that point
the full tangent space toM(m,C) at the same point.

Notice that Eqs.~2.4! have the following symmetry:

s:~x,y,ẋ,ẏ,t !→~x,2y,2 ẋ,ẏ,2t !. ~3.3!

Therefore, if we know the unstable manifold ofL1 or of the
Lyapunov orbit~which is a symmetrical periodic orbit! the
corresponding stable manifold is obtained through the us
the stated symmetry. This observation will be used to fi
the transversal homoclinic orbits.

1. Analytical results for L 1 Lyapunov orbit in interior
region

Using the basic framework developed in McGehe9

LMS5 were able to prove the following two analytical re
sults. Together these two theorems imply that for sufficien
small m and for an appropriate range ofDC5C12C, the
invariant manifoldsWL1 ,p.o.

s,S and WL1 ,p.o.
u,S in the interior re-

gion S intersect transversally.
Theorem 3.3: For m sufficiently small, the branch WL1

u,S

of WL1

u in the interior regionS has a projection on position

space [see Fig. 16(a)] given by

d5m1/3~ 2
3 N231/61M cost1o~1!!,

a52p1m1/3
„Nt12M sint1o~1!…,

where d is the distance to the zero velocity curve, a is the
angular coordinate, and N and M are constants.

In particular, for a sequence of values ofm which have
the following asymptotic expression:
t

t
an

of
d

y

mk5
1

N3k3 „11o~1!…, ~3.4!

the first intersection of this projection with the x-axis is or-
thogonal to that axis, giving a symmetric (1,1)-homoclin
orbit for L1 . The prefix (1,1) refers to the first intersectio
(with the Poincare´ section defined by the plane y50,x,0) of
both the stable and unstable manifolds of L1 .

Theorem 3.4: For m andDC5C12C sufficiently small,
the branch WL1 ,p.o.

u,S of WL1 ,p.o.
u contained initially in the inte-

rior region S of the energy surface intersects the plane
50 for x,0 in a curve diffeomorphic to a circle [see Fig
16(b)].

In particular, for points in the(m,C) plane such that
there is amk of Theorem 3.3 for which

DC.Lmk
4/3~m2mk!

2 ~3.5!

holds (where L is a constant), there exist symmetric tra
versal (1,1)-homoclinic orbits.

For details of the proofs, see LMS.5 We would like to
make a few comments about these results which are perti
to the main thrust of our paper.

~1! The main objective of both theorems is to study t
transversality of the invariant manifolds for theL1

Lyapunov orbit on the energy surface whose Jacobi c
stantC is slightly less thanC1(m) as one variesm and
C. The main step is to obtain an expression for the fi
intersectionG1

u,S of the unstable manifoldWL1 ,p.o.
u,S with

the planey50 in the regionx,0. While formulas were
provided in LMS5 for this closed curve as a function o
m andDC in the variablesx, ẋ, they are quite compli-
cated and difficult to interpret and hence are not includ
here. But the key point is the following. According t
Theorem 3.3, the set of values ofm for which we have a
symmetric~1,1!-homoclinic orbit associated toL1 is dis-
crete and is given by Eq.~3.4!. Then for any other value
of m the unstable manifoldWL1

u,S of L1 reaches the

(x,ẋ)-plane in a point (x1 ,ẋ1) outsideẋ50. Therefore,
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if DC is too small,G1
u,S does not cut thex-axis and

hence~by symmetry! G1
s,S of the stable manifoldWL1 ,p.o.

s,S

does not cut thex-axis either. Therefore the first inter
sections of the invariant manifolds do not meet and th
is no symmetric~1,1!-homoclinic orbit.

However, for a fixed value ofm, if we increaseDC,
we hope thatG1

u,S of the unstable manifold will becom
large. Therefore we can look for some value ofDC such
thatG1

u,S becomes tangent to thex-axis or even intersect
it at more than one point. Then, due to the reversibi
of the PCR3BP,G1

s,S of the stable manifold also inter
sects thex-axis at the same points. PointsP on the
x-axis whereG1

u,S andG1
s,S intersect correspond to~sym-

metric! orbits homoclinic to the Lyapunov orbit@see Fig.
16~b!#. If G1

u,S is transversal toG1
s,S at P then the ho-

moclinic orbit is transversal. The results of Theorem 3
say that the above phenomenon occurs ifDC
.Lmk

4/3(m2mk)
2 holds.

~2! Using the results of Theorem 3.4, LMS5 was able to
draw the mesh of homoclinic tangencies for t
(m,DC)-plane. The numbers in Fig. 17 show the numb
of symmetric~1,1!-homoclinic points found in the firs
intersection ofWL1 ,p.o.

u,S with the planey50, x,0 when

one variesm andDC. For us, the key point of the theo
rems is that for the wide range ofm which exist in the
solar system, the invariant manifolds of theL1 Lyapunov
orbit intersect transversally for sufficiently largeDC.

~3! The heart of the proofs of these two theorems is to ob
expressions forWL1

u,S as a function ofm and forWL1 ,p.o.
u,S

as a function ofm and DC. By using the basic frame
work of McGehee,9 LMS5 divided the annulusT1 in the
interior regionS into two parts: a small neighborhoodH
near R1 and the rest of the region outside this sm
neighborhood. In the neighborhoodH, the PCR3BP can
be considered as a perturbation of the Hill’s problem.
celestial mechanics, it is well known that Hill’s proble
studies the behavior near the small mass of PCR3B
the limit when m approaches zero. In the rest of th
region away from the small mass, the PCR3BP can

FIG. 17. Partition of the (m,DC)-plane according to the number of sym
metric ~1,1!-homoclinic points found in the first intersection ofWL1 ,p.o.

u,S with

the planey50, x,0.
e

r

in

l

in

e

approximated by the two-body problem in a rotatin
frame. Through a number of careful estimations, LM5

were able to obtain these analytical results.

2. Summary

Conley8 and McGehee9 have proved the existence of ho
moclinic orbits for both the interior and exterior region, an
LMS5 have shown analytically the existence of transver
symmetric~1,1!-homoclinic orbits in the interior region un
der appropriate conditions. For our problem, we need to fi
transversal homoclinic orbits in both interior and exter
regions as well as transversal heteroclinic cycles for theL1

and L2 Lyapunov orbits. We shall perform some numeric
explorations using the tools developed by the Barcelo
group. For more details on finding invariant manifolds n
merically, see Go´mez, Jorba, Masdemont, and Simo´16 and
references therein.

D. The existence of transversal homoclinic orbits in
the exterior region

We turn our attention now to numerical explorations
the problem, and in particular, to the existence of transve
homoclinic orbits for theL2 Lyapunov orbit in the exterior
region. Though there are no analytical results proving
existence of transversal homoclinic orbits in theX region, we
can construct them numerically by finding an intersection
the manifoldsWL2 ,p.o.

s andWL2 ,p.o.
u on an appropriately cho

sen Poincare´ section.
Numerical experiments guided by geometrical insig

suggest that we cut the flow by the planey50, the line
passing through the two masses in the rotating frame.
branch of the manifoldWL2 ,p.o.

u which enters theX region

flows clockwise in the position space. We refer to this ex
rior branch of the manifold asWL2 ,p.o.

u,X . See Fig. 18~a!. This

two-dimensional manifold ‘‘tube’’WL2 ,p.o.
u,X first intersects the

planey50 on the part ofT2 which is opposite toL2 with
respect to the Sun~i.e., x,0). The intersection, as on
would expect geometrically, is a curve diffeomorphic to
circle. We call this intersection the first ‘‘cut’’ ofWL2 ,p.o.

u,X

with y50. See Fig. 18~b!. Note that in order to define the
first cut we exclude a neighborhood ofn2 in the X region.
Some arcs of this curve produce successive intersect
without leaving theX region. Theq-th of these intersections
of WL2 ,p.o.

u,X with y50 will be referred to asGq
u,X . In a similar

manner we callGp
s,X the correspondingp-th intersection with

y50 of the exterior region branch ofWL2 ,p.o.
s .

A point in y50 belonging toGq
u,XùGp

s,X ~if not empty!
will be called a (q,p)-homoclinic point. The existence of
(q,p)-homoclinic points for certainq and p is shown in
McGehee.9

Our goal is to obtain the first such transversal inters
tion of Gq

u,X with Gp
s,X and so obtain a transversa

(q,p)-homoclinic point. Other intersections~for largerq and
p) may exist, but we will restrict ourselves for now to th
first. Suppose that the unstable manifold intersectionGq

u,X is
a closed curveg in the variablesx,ẋ. Let sx be the symmetry
with respect to thex-axis on this plane. Then due to th
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FIG. 18. ~Color online! ~a! The position space projection of the unstable manifold ‘‘tube’’WL2 ,p.o.
u,X until the first intersection with the Poincare´ section at

y50, x,0. ~b! The first Poincare´ cut G1
u,X of the manifoldWL2 ,p.o.

u,X on the planey50, x,0.
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reversibility of the PCR3BP, theq-th intersectionGq
s,X of the

stable manifoldWL2 ,p.o.
s,X with y50 is sxg. For some mini-

mum q, the closed curveg intersects theẋ50 line of the
(x,ẋ)-plane. PointsP along the curveg which intersect the
ẋ50 line are (q,q)-homoclinic points, corresponding t
~symmetric! orbits homoclinic to the Lyapunov orbit. If the
curveg is transversal to the curvesxg at the pointP then the
homoclinic orbit corresponding toP is transversal. If inter-
sections between the curvesg and sxg exist off the lineẋ
50 @i.e., if the set (gùsxg)\$ẋ50% is nonempty#, then non-
symmetric homoclinic orbits appear.

Consider Fig. 18~b!, where we used the valuesm
50.0009537 andDC5C22C50.01 to compute the un
stable Poincare´ cut. If we also plotted the stable cutG1

s,X ,
which is the mirror image of unstable cutG1

u,X , we would
find several points of intersection. In Fig. 19~a! ~Plate 5!, we
focus on the left-most group of points, centered at aboux
522.07. We find twoẋ50 intersections which are trans
versal homoclinic points in theX region. The transversa
symmetric ~1,1!-homoclinic orbit corresponding to the le
ẋ50 intersection is shown in Fig. 19~b! ~Plate 5!.

We also notice two off-axis intersections in Fig. 19~a!
~Plate 5!, completing the local transversal intersection of tw
closed loops in the (x,ẋ)-plane. As these two intersection
occur near the lineẋ50, they will be nearly symmetric. A
more pronounced case of nonsymmetry occurs for the o
group of intersection points centered nearx521.15, for
which we have the nonsymmetric~1,1!-homoclinic orbit
given in Fig. 20.

A similar procedure can numerically produce homoclin
orbits in the interior region as well as in the Jupiter regio
We can even look at cuts beyond the first. See Fig. 21~a!
~Plate 5!.

For example, in Fig. 21~b! ~Plate 5! we show an interior
region ~1,3!-homoclinic orbit@note, also~2,2! and ~3,1!, us-
ing q̄1 p̄5q1p# associated to anL1 Lyapunov orbit form
50.1, DC5C12C50.0743.
er

.

E. The existence of heteroclinic connections between
Lyapunov orbits

We construct a heteroclinic connection betwe
Lyapunov orbits ofL1 andL2 by finding an intersection of
their respective invariant manifolds in theJ region. To do
so, we seek points of intersection on a suitably chosen P
caré section. For instance, to generate a heteroclinic o
which goes from anL1 Lyapunov orbit~ast→2`) to anL2

Lyapunov orbit~as t→1`), we proceed as follows.
We restrict ourselves for now to case 3 (C2.C.C3 ,

see Fig. 10!, for which the Hill’s region opens enough t
permit Lyapunov orbits about bothL1 and L2 to exist. Let
the branch of the unstable manifold of theL1 Lyapunov orbit
which enters theJ region be denotedWL1 ,p.o.

u,J . On the same

energy surface~the sameC value! there is anL2 Lyapunov
orbit, whose stable manifold in theJ region we shall simi-

FIG. 20. ~Color online! A nonsymmetric~1,1!-homoclinic point.
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larly denoteWL2 ,p.o.
s,J . The projection of the two-dimensiona

manifold tubes onto the position space is shown in Fig. 22~a!
~Plate 6!.

To find intersections between these two tubes, we cut
flow by the planex512m. See Fig. 22~b! ~Plate 6!.

This convenient plane maximizes the number of int
sections for values ofm, C which produce manifolds making
a limited number of revolutions around Jupiter before esc
ing from theJ region. Theq-th intersection ofWL1 ,p.o.

u,J with

the planex512m will be labeledGL1 ,q
u,J . Similarly, we will

call GL2 ,p
s,J the p-th intersection ofWL2 ,p.o.

s,J with x512m.

Numerical experiments show that theL1 Lyapunov orbit
unstable manifoldWL1 ,p.o.

u,J does not coincide with theL2

Lyapunov orbit stable manifoldWL2 ,p.o.
s,J . Moreover, for a

wide range ofm andC values~whereC2.C.C3), numeri-
cal explorations show that they do intersect transversa
While it is true that for certain values ofm andC, there are
tangencies between the stable and unstable manifold, we
not deal with this interesting case in this study. Hence, fr
now on, we will concentrate our numerical explorations on
on the cases where the stable and unstable manifold inte
transversally.

Now, suppose thatGL1 ,q
u,J and GL2 ,p

s,J are each closed

curves in the variablesy,ẏ. A point in the planex512m
belonging to the intersection of the two closed curves~i.e.,
GL1 ,q

u,J ùGL2 ,p
s,J ) will be called a (q,p)-heteroclinic point be-

cause such a point corresponds to a heteroclinic orbit go
from the L1 Lyapunov orbit to theL2 Lyapunov orbit. Our
objective is to obtain the first intersection point~or group of
points! of the curveGL1 ,q

u,J with the curveGL2 ,p
s,J and so obtain

the minimum values ofq and p such that we have a trans
versal (q,p)-heteroclinic point. Other intersections may e
ist, but we will restrict ourselves for now to the first. F
some minimumq and p, we have an intersection of th
curves, and some number of (q,p)-heteroclinic points, de-
pending on the geometry of the intersection. Note that
sumq1p must be an even positive integer.

As we are interested in heteroclinic points for the Su
Jupiter system (m50.0009537), we tookC53.037 and pro-
ceeded numerically to obtain the intersections of the inv
ant manifoldsWL1 ,p.o.

u,J and WL2 ,p.o.
s,J with the planex51

2m. In Fig. 22~b! ~Plate 6! we show the curvesGL1 ,q
u,J for

q51,2 andGL2 ,p
s,J for p51,2. Notice thatGL1,2

u,J and GL2,2
s,J

intersect in two points@the black dots in Fig. 22~b! ~Plate 6!
near y50.042#. Thus, the minimumq and p for a hetero-
clinic point to appear for this particular value ofm, C is q
52 andp52. The~2,2!-heteroclinic points can each be fo
ward and backward integrated to produce heteroclinic tra
tories going from theL1 Lyapunov orbit to theL2 Lyapunov
orbit. We show one of the heteroclinic orbits in Fig. 2
Notice that the number of revolutions around Jupiter is giv
by (q1p21)/2. The reverse trajectory, going from theL2

Lyapunov orbit to theL1 Lyapunov orbit, is easily given by
the symmetrys ~3.3!. It would be the mirror image~about
the x-axis! of the trajectory in Fig. 23, with the directio
e

-

-

y.

ill

ect

g

e

i-

c-

n

arrows reversed. These twoheteroclinic connectionstogether
form a symmetricheteroclinic cycle.

F. The existence of chains of homoclinic orbits and
heteroclinic cycles

We have used a combination of analytical and numer
techniques to show the existence of homoclinic and hete
clinic orbits associated to theL1 andL2 Lyapunov orbits for
case 3. We now take the final step, combining homocli
and heteroclinic orbits of the same Jacobi constant valu
generate what is called a homoclinic/heteroclinic chain
orbits, which connect asymptotically theL1 and L2

Lyapunov orbits to each other. As will be seen, these cha
imply a complicated dynamics connecting the interior, ex
rior, and Jupiter regions.

As an example, we again choose the Sun–Jupiter sys
(m50.0009537), but now a Jacobi constant value similar
that of comet Oterma during its Jupiter encounters (C
53.03). Using the described methodologies, we obtain
interior region orbit homoclinic to theL1 Lyapunov orbit, an
exterior region orbit homoclinic to theL2 Lyapunov orbit,
and a heteroclinic cycle connecting theL1 andL2 Lyapunov
orbits. The union of these orbits is ahomoclinic–heteroclinic
chain. See Fig. 2~Plate 1!. The existence of homoclinic–
heteroclinic chains has important consequences, which
be expanded upon further in Sec. IV.

IV. GLOBAL ORBIT STRUCTURE

The idea of reducing the study of the global orbit stru
ture of a system of differential equations to the study of
associated discrete map is due to Poincare´ ~1890!, who first
utilized the method in his studies of the restricted three-bo
problem. In this section we shall use the chain of two h
moclinic orbits and one symmetric heteroclinic cycle~previ-
ously generated in Sec. III! to construct a suitable Poincar´
map. Our choice of Poincare´ map will allow us to study the
complex global orbit structure near the chain. We shall fi
an invariant set for this map near some transversal

FIG. 23. ~Color online! The existence of a transversal~2,2!-heteroclinic
orbit in theJ region.
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moclinic and heteroclinic points along the chain whe
‘‘Smale horseshoe’’-like dynamics exist. We shall then u
symbolic dynamics to characterize the chaotic motion o
comet in a neighborhood of the chain as it transitions in
mittently through the interior, Jupiter, and exterior region
Not only shall we prove the existence of the invariant set,
we shall also numerically approximate it, gaining further
sight into the complex global dynamics associated with
chains.

Here is additional detail about how we shall proceed

~1! In Sec. IV A, we shall construct a Poincare´ mapP trans-
versal to the flow whose domainU consists of four dif-
ferent squaresUi , i 51, 2,3,4, located in different re
gions of phase space in the neighborhood of the ch
See Figs. 24~Plate 6! and 25~Plate 7!.

SquaresU1 and U4 are contained in the surfacey
50 and each centers around a transversal homoc
point in the interior and the exterior region, respective
SquaresU2 and U3 are contained in the surfacex51
2m (y,0 and y.0, respectively! and center around
transversal heteroclinic points in the Jupiter regi
which are symmetric with respect to each other. Clea
for any orbit which passes through a pointq in one of
the squares and whose images and pre-ima
@Pn(q), n50,61,62,...# all remain in the domainU,
the whereabouts ofPn(q) ~asn increases or decrease!
can provide some of the essential information about
history of the particular orbit. We record this histo
with a bi-infinite sequence. This well-known techniqu
of studying only the set of points that forever remain
the domainU ~the invariant set! provides us with all the
periodic solutions as well as the recurrent solutions
the neighborhood of the chain.

~2! The technique of characterizing the orbit structure o
dynamical system via a set of bi-infinite sequences
‘‘symbols’’ is known assymbolic dynamics.

In Sec. IV B and Sec. IV C, we shall extend the sym
bolic dynamics results of LMS5 to our situation and con
struct a set of bi-infinite sequences with two families
symbols. The first family is asubshift of finite typewith
four symbols$u1 ,u2 ,u3 ,u4%. It is used to keep track o
the whereabouts of an orbit with respect to the fo
squaresU1 ,U2 ,U3 ,U4 . The symbolui is recorded ev-
ery time theUi square is pierced by the orbit. Subsh
here means that among the set of all bi-infinite sequen
of four symbols,@i.e., (...,ui 21

;ui 0
,ui 1

,ui 2
,...) where i j

ranges from 1 to 4#, certain sequences where the adjac
entries in the sequence violate certain relations are
allowed. For example, fromU1 , the~forward! flow can-
not get to U4 without passing through other square
Hence, in the bi-infinite sequence, the symbolu1 cannot
be followed byu4 . The relations can be defined by
matrix A called thetransition matrix. In our case,

A5S1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1
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It is constructed by the following rule: (A)kl51 if the
ordered pair of symbolsuk , ul may appear as adjacen
entries in the symbolic sequence, and (A)kl50 if the
ordered pair of symbolsuk , ul may not appear as adja
cent entries. For example, sinceu1 cannot be followed
by u4 , we have (A)1450.

The second family is afull shift of infinite typewith
symbols of positive integers greater than a fixed inte
m. This set of bi-infinite sequences of positive integers
used to keep track of the number of integer revolutio
that the projection of an orbit winds around eitherL1 or
L2 when the orbit enters the equilibrium regionsR1 or
R2 , respectively.

~3! In Sec. IV D, we shall state the main theorem of th
section and discuss its implications. The theorem gi
the global orbit structure of the PCR3BP in a neighb
hood of a chain of homoclinic orbits and a symmet
heteroclinic cycle. It says essentially that given any
infinite sequence,
a5~u,r!5„...,~ui 21

,r 21!;~ui 0
,r 0!,~ui 1

,r 1!,~ui 2
,r 2!...…,

there exist initial conditions near the transversal h
moclinic and heteroclinic points such that an orbit co
responding to such initial conditions starts atUi 0

and

goes to Ui 1
@provided (A) i 0i 1

51#. This orbit passes

through either the equilibrium regionR1 or R2 depend-
ing on whether the initial index (i 0 in the current case! is
1,3 or 2,4. For example, ifi 051, then the projection of
the orbit winds aroundL1 for r 0 revolutions inside the
regionR1 before leaving forUi 1

. See Figs. 24~Plate 6!

and 25~Plate 7!. After that, the same process begins w
(ui 1

,r 1) in place of (ui 0
,r 0) and (ui 2

,r 2) in place of

(ui 1
,r 1), etc. For negative time, a similar behavior

described for (ui 21
,r 21), (ui 0

,r 0), etc. While the for-

malism involved in the proof is fairly standard, there a
a few new features which may be worth pointing ou
While most of these comments will be made earlier,
shall provide a sketch of the proof in Sec. IV D and Se
IV F both for completeness and for the convenience
the reader. For more details, one can consult Mose10

LMS5 and Wiggins.15,17

~4! In Sec. IV E we numerically construct sets of orbits wi
prescribed itineraries. By successive application of
Poincare´ map P to a transversal plane in the neighbo
hood of a chain, we can generate regions of orbits w
itineraries of any size.

A. Construction of a suitable Poincare ´ map

In Sec. III, we have shown that with an appropriate J
cobi constant, there exists a chain of two homoclinic orb
and one symmetric heteroclinic cycle. For simplicity of e
position, let us suppose that the chainC consists of~1,1!-
transversal homoclinic orbits in the interior and exterior
gions and a symmetric~1,1!-transversal heteroclinic cycle in
the Jupiter region. A similar study can be done for oth
cases.

Now we are ready to construct a Poincare´ map. The first
step is to construct the transversal maps on the boun
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spheres of the equilibrium regionsR1 andR2 . Let e1 ande2

be small positive quantities. For the bounding spheresn1,1

and n1,2 of the equilibrium region R1 , we define
A1 , B1 , C1 , D1 , E1 , F1 , G1 , and H1 as the set of
points of d1,1

2 ,r 1,1
2 ,r 1,1

1 ,d1,1
1 ,d1,2

1 ,r 1,2
1 ,r 1,2

2 and d1,2
2 , respec-

tively, such thatizu22r* u,e. These sets correspond to th
strips on the bounding sphere centered on the asymptotic
a1,1

2 ,a1,1
1 ,a1,2

1 , anda1,2
2 , respectively. Similarly, we can de

fine corresponding strips for the bounding spheresn2,1 and
n2,2 of the equilibrium regionR2 . See Fig. 25~Plate 7!.

If e1 ande2 are small enough, the flow is transversal
the surfaces just defined. Recall from Sec. II D that orb
entering R1 through C1 ,D1 ,E1 ,F1 leave it through
B1 ,H1 ,A1 ,G1 , respectively, becauseuzu2 is a first integral
in R1 . Therefore the diffeomorphismsc1,i send
D1 ,E1 ,C1 ,F1 into H1 ,A1 ,B1 ,G1 , respectively, for i
51,2,3,4. Similar results hold for orbits enteringR2 and the
corresponding diffeomorphismsc2,i sendD2 ,E2 ,C2 ,F2 into
H2 ,A2 ,B2 ,G2 , respectively, fori 51,2,3,4.

The second step is to construct transversal maps ou
of the equilibrium regions. Letp1,1Pa1,1

1 ~resp.,p2,2Pa2,2
1 )

be a point of the transversal homoclinic orbit ofC in the
interior ~resp., exterior! region. LetA18 andB18 ~resp.,G28 and
H28) be the first images ofA1 andB1 ~resp.,G2 andH2) in
n1,1 ~resp.,n2,2) sent by the forward flow outsideR1 ~resp.,
R2). The maps sendingA1 ,B1 ,G2 ,H2 onto A18 ,B18 ,G28 ,H28
are diffeomorphisms. In a neighborhood ofp1,1 ~resp.,p2,2)
the qualitative picture ofA18 and B18 ~resp.,G28 and H28) is
shown in Fig. 25~Plate 7! providede1 ande2 are sufficiently
small.

Similarly, let p1,2Pa1,2
1 and p2,1Pa2,1

1 be points of the
transversal heteroclinic cycle ofC in the Jupiter region. Let
A28 andB28 ~resp.,G18 andH18) be the first images ofA2 and
B2 ~resp.,G1 and H1) in n1,2 ~resp.,n2,1) sent by the flow
outsideR1 and R2 . The mappings sendingA2 ,B2 ,G1 ,H1

into A28 ,B28 ,G18 ,H18 are diffeomorphisms. In a neighborhoo
of p1,2 ~resp., p2,1) the qualitative picture ofA28 and B28
~resp.,G18 andH18) is also shown in Fig. 25~Plate 7!.

Now let U1 ~resp., U4) be the sets diffeomorphic to
(C1øD1)ù(A18øB18) @resp., (E2øF2)ù(G28øH28)# defined
by following the flow backwards up to the first crossing wi
the surfacey50. Similarly, let U2 ~resp.,U3) be the sets
diffeomorphic to (C2øD2)ù(G18øH18) @resp.,
(E1øF1)ù(A28øB28)# defined by following the flow back-
wards up to the first crossing with the surfacex512m. See
Figs. 24~Plate 6! and 25~Plate 7!. Since each of the setsUi

are topologically a square, we shall refer to them loosely
squares in the rest of this section.

Let U5U1øU2øU3øU4 . We define the Poincare´ map
P:U→U in the following way: To each pointqPU we as-
sign the corresponding first intersection point withU of the
orbit passing throughq, if such an intersection exists. Fo
simplicity of notation, we shall loosely refer toU1 as
(C1øD1)ù(A18øB18) even thoughU1 actually lies in the
surfacey50. Similar convention will be used for the othe
Ui ’s.

Now we shall consider the invariant set of points,L,
which remain inU under all forward and backward iteration
by P. ThusL is defined as
ets

s

de

s

L5ùn52`
` Pn~U !.

This invariant set contains all the periodic solutions as w
as the recurrent solutions near the chain and provides ins
into the global dynamics in a neighborhood of the chain.

Compared with the standard textbook example wh
studies the chaotic dynamics in a neighborhood of a tra
versal homoclinic point of a two-dimensional mapf , the
Poincare´ mapP constructed in this section has a number
special properties.

1. Domain of the Poincare ´ map P

Instead of studying the first return mapf̄ ~induced byf )
on a~small! topological squareQ, the domainU of the Poin-
caré map P consists of four squaresUi , i 51,2,3,4 which
center aroundp1,1,p2,1,p1,2,p2,2, respectively. See Fig. 26
~Plate 7!.

Moreover, the mapP is not defined on points inU be-
longing to the invariant manifolds of theL1 and L2

Lyapunov orbits. TakeU1 as an example. On the curve
GL1,1

u,S and GL1,1
s,S which are the first intersections of the un

stable and stable invariant manifolds of theL1 Lyapunov
orbit with the surfacey50 in the interior~Sun! region, the
Poincare´ map is singular because any point on those cur
will be carried by the flow asymptotically backward or fo
ward towards theL1 Lyapunov orbit. Hence, we have a kin
of singular Poincare´ map as it has been considered
Devaney.18 We shall return to this point at the end of Se
IV C.

Therefore, we must consider in fact four small~open!
squares inU1 , namely,

~C1ùA18!, ~C1ùB18!, ~D1ùA18!, and ~D1ùB18!.

A similar consideration is also needed for the otherUi ’s
which add up to sixteen small squares in total. See Fig.
~Plate 7!.

2. Horizontal and vertical strips

For the standard textbook example, the first return maf̄
~induced by f ) on the squareQ qualitatively looks like a
Smale horseshoe map. Conley and Moser found condit
for the mapf̄ to satisfy in order for it to have an invarian
subsetL f̄ of Q on which it has chaotic dynamics. Thes
conditions are a combination of geometrical and analyti
conditions.

~1! The geometrical part consists of generalizing the not
of horizontal and vertical rectangles to horizontal a
vertical strips inQ by allowing the boundaries to b
Lipschitz curves, rather than straight lines. With th
generalization in hand one then requires ‘‘horizonta
strips to map to ‘‘vertical’’ strips with horizontal bound
aries mapping to horizontal boundaries and verti
boundaries mapping to vertical boundaries.

~2! The analytical part comes from requiring uniform co
traction in the horizontal directions and expansion in t
vertical direction~Fig. 28!.
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For the Poincare´ map P constructed in this section, th
situation becomes more complicated in two ways. First,
number of strips in each family generated after one itera
is not two or even finite, but is instead infinite. Second,
need to used subshift to keep track of the image of e
family of strips. Here, we shall discuss first the issue of e
family having an infinite number of strips.

Let us considerUùP(U). For simplicity of exposition,
take U1 as an example and consider the small squa
(D1ùA18) and (D1ùB18). See Fig. 29~Plate 8!.

Recall the observation in Sec. II D on the spiraling of
abutting arc with an endpoint in the asymptotic set o
bounding sphere. The image of the squares (D1ùA18) and
(D1ùB18) underP is a strip contained inH18 of arbitrarily
long length, cuttingU2 an infinite number of times and sp
raling towardsGL1,1

u,J , becoming skinnier when approachin

the limit. The intersection of this strip withU ~in fact only
with U2) forms an infinite number of components. All bu
perhaps one of the components are limited by the sidee6

ande8 . We call each of the components of

P„~D1ùA18!ø~D1ùB18!…ùU,H18 ,

a vertical strip of H18 ~in U2).
Now consider all the vertical strips inH18 and denote

these byVH1,08 ,VH1,18 ,..., beginning with the strips neares
to e5 . We have onH18 a family of vertical strips$VH1,n8 %
bounded by the sidese6 ande8 ~in U2) and with the width of
VH1,n8 tending to zero asn tends to infinity. We define

VH1,̀8 5 lim
n→`

VH1,n8 .

Clearly,VH1,̀8 is simply the vertical curveGL1,1
u,J which is on

the Jupiter region branch of the unstable invariant manif
of the L1 Lyapunov orbit. Similar constructions can be ca
ried out for the other small squares (C1ùA18) and (C1ùB18)
of U1 which yield a family of vertical strips inB18 . In order
to keep track of these families of vertical strips more effe
tively, we shall rename$VB1,n8 % and $VH1,n8 % as $Vn

11% and
$Vn

21%, respectively. Notice that forVn
ji , the index j i indi-

cates that the family is in the squareU j and it came from the
squareUi . For simplicity of illustration, we have used rec

FIG. 28. Generalization of the notion of horizontal and vertical rectang
for the Conley–Moser conditions.
e
n
e
h
h

s

d

-

angles to represent strips in Fig. 29~Plate 8!. Similar repre-
sentations will be used throughout the rest of this section

Similarly, we can look at the first iterate byP of the
otherUi ’s and obtain families of vertical strips in

B28~$Vn
32%!,H28~$Vn

42%!,A18~$Vn
13%!,G18~$Vn

23%!,

A28~$Vn
34%!,G28~$Vn

44%!.

Therefore,UùP(U) is the disjoint union of eight families o
pairwise disjoint vertical strips.

An analogous study can be done forUùP21(U). Con-
sider the small squares (D1ùA18) and (C1ùA18) of U1 .
Then P21

„(D1ùA18)ø(C1ùA18)… is a strip contained inE1

of arbitrarily long length, cuttingU3 an infinite number of
times and spiraling towardsGL1,1

s,J , becoming thinner while

approaching the limit. The intersection of this strip withU
~in fact only with U3) forms an infinite number of compo
nents. All but perhaps one of the components are limited
the sidese9 ande11. We call each of the components of

P21
„~D1ùA18!ø~C1ùA18!…ùU,E1 ,

a horizontal strip of E1 ~in U3).
Now consider all the horizontal strips inE1 and denote

these byHE1,0,HE1,1,..., beginning with the strip nearest t
e10. We have onE1 a family of horizontal strips$HE1,n%
bounded by the sidese9 ande11 ~in U3) and with the width
of HE1,n tending to zero asn tends to infinity. We define

HE1,̀ 5 lim
n→`

HE1,n .

Clearly,HE1,̀ is simply the horizontal curveGL1,1
s,J which is

on the stable invariant manifolds of theL1 Lyapunov orbit.
Similar constructions can be carried out for the oth

small squares (C1ùB18) and (D1ùB18) of U1 which yield a
family of horizontal strips inC1 . We shall again rename
$HC1,n% and$HE1,n% as$Hn

11% and$Hn
31%, respectively. No-

tice that forHn
i j , the indexi j indicates that the family is in

the squareUi and it will go to the squareU j .
Similarly, we can look at the first iterate byP21 of the

otherUi ’s and obtain families of horizontal strips in

D1~$Hn
12%!,F1~$Hn

32%!,C2~$Hn
23%!,E2~$Hn

43%!,

D2~$Hn
24%!,F2~$Hn

44%!.

Therefore,UùP21(U) is the disjoint union of eight families
of pairwise disjoint horizontal strips.

Now we shall discuss briefly the meaning of the su
scriptn in the vertical stripVn

ji . It can be used to keep trac
of the number of revolutions the projection of the associa
orbits wind aroundL1 or L2 . For example, the orbit which
pierces the vertical stripVk11

21 has wound one more time
aroundL1 than the orbit which pierces the vertical stripVk

21.
Moreover, given anye1 for the width of the stripsD1 and
H18 , there is a minimum number of integer revolutionsr min

aroundL1 an orbit will make in going fromD1 ~in U1) to H18
~in U2). With this specifice1 , the orbit which piercesVn

21

has wound aroundL1 for (n1r min) times. In the rest of Sec
IV, we shall assume that we have adjusted the widths~the
e j ’s) of all the other corresponding pairs of strips so that

s
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minimum number of revolutions aroundL1 or L2 is the same
for all the Ui ’s. With this adjustment, any orbit which
piercesVn

ji is now in U j . It came fromUi and has wound
aroundL1 ~if ui51,3) orL2 ~if ui52,4) for (n1r min) times.

B. The generalized Conley–Moser conditions

For the standard textbook example~introduced in Sec.
IV A ! concerning the dynamics near a transversal homocl
point, it is well known that if the first return mapf̄ ~induced
by f ! on the squareQ satisfies the following Conley–Mose
conditions, then there exists an invariant setL f̄ of Q on
which f̄ has chaotic dynamics.

Condition 1: There exist a finite~or possibly infinite!
number of horizontal and vertical stripsHi andVi with i in
an index set. The mappingf̄ takesHi homeomorphically
onto Vi , with horizontal boundaries mapped to horizon
boundaries and vertical boundaries mapped to vert
boundaries.

Condition 2: SupposeV is a vertical strip contained in
ø iVi . Then f̄ (V)ùVi5V̄i is a vertical strip for everyi .
Moreover,w(V̄i)<nvw(V) for some 0,nv,1 wherew(V)
is the width of stripV. Similarly, supposeH is a horizontal
strip contained inø iHi . Then f̄ 21(H)ùHi5H̄i is a hori-
zontal strip for everyi . Moreover, w(H̄i)<nhw(H) for
some 0,nh,1.

We shall call Condition 1 thestrip condition. Since Con-
dition 2 requires a uniform contraction in the horizontal d
rection and expansion in the vertical direction, it can
called thehyperbolicity condition.

For the Poincare´ map P constructed in Sec. IV A, the
situation is more complex. Now we have four squaresU1

throughU4 together with eight families of pairwise disjoin
horizontal strips and eight families of pairwise disjoint ve
tical strips. We shall state below the theorem that the Po
carémapP of the PCR3BP satisfies the generalized Conle
Moser conditions but shall leave its proof to Sec. 4.5.

Theorem 4.1:The Poincare´ map P satisfies the follow
ing generalized Conley–Moser conditions:

Generalized Condition 1: P maps horizontal strips
vertical strips, i.e.,

P~Hn
11!5Vn

11, P~Hn
12!5Vn

21,

P~Hn
23!5Vn

32, P~Hn
24!5Vn

42,

P~Hn
31!5Vn

13, P~Hn
32!5Vn

23,

P~Hn
43!5Vn

34, P~Hn
44!5Vn

44,

for all positive integers n, with horizontal boundaries map
ping to horizontal boundaries and vertical boundaries ma
ping to vertical boundaries.

Generalized Condition 2: Let V be a vertical strip co
tained inø iVi

13. Then

Vn85P~V!ùVn
11 and Vn95P~V!ùVn

21

are two vertical strips for every n. Moreover,

w~Vn8!<nvw~V! and w~Vn9!<nvw~V!,
ic

l
al

e

-
–

-

for some0,nv,1, where w(V) is the width of V. Similarly,
let H be a horizontal strip contained inø iHi

11. Then

Hn85P21~H !ùHn
31 and Hn95P21~H !ùHn

11

are two horizontal strips for every n. Moreover,

w~Hn8!<nhw~H ! and w~Hn9!<nhw~H !,

for some0,nh,1. Similar assertions are true for the othe
families of vertical and horizontal strips.

Recall that

HC1,n5Hn
11, HD1,n5Hn

12,

HE1,n5Hn
31, HF1,n5Hn

32,

HC2,n5Hn
23, HD2,n5Hn

24,

HE2,n5Hn
43, HF2,n5Hn

44,

VA1,n8 5Vn
13, VB1,n8 5Vn

11,

VG1,n8 5Vn
23, VH1,n8 5Vn

21,

VA2,n8 5Vn
34, VB2,n8 5Vn

32,

VG2,n8 5Vn
44, VH2,n8 5Vn

42,

where HC1,n is the n-th horizontal strip of the horizonta
rectangleC1 andVA1,n8 is then-th vertical strip of the verti-
cal rectangleA18 , etc. Moreover, the indexi j of $Hn

i j % indi-
cates that the family is in the squareUi and it will go to the
squareU j where the indexj i of $Vn

ji % indicates that the fam-
ily is in the squareU j and it came from the squareUi . See
Fig. 29 ~Plate 8!.

Even though the proof will be deferred to Sec. IV F, w
shall use this result to prove the main theorem on the glo
orbit structure of the PCR3BP in Sec. IV C and Sec. IV D

C. Symbolic dynamics

In Sec. IV A and Sec. IV B, we have constructed a Po
carémapP on U whose domain consists of four topologic
squaresUi , i 51,2,3,4, each of which is further subdivide
into four smaller squares by two curves that lie on the inva
ant manifolds of the Lyapunov orbits. Moreover,P satisfies
the generalized Conley–Moser conditions.

While we need to take stock of certain new features,
basic formalism developed by Smale, Conley, and Mo
still holds with a few modifications.

For the horseshoe maph which bends a squareD into a
horseshoe and intersects it with the square, one has an
nite Cantor set of trapped pointsp in the invariant setLh .
Here,

Lk5ùn52`
` hn~D !,

which is the set of points in the squareD that remain in the
square under all forward and backward iterations byh.

Recall thatp can be defined by

p5$qPDuhi~q!PHsi
,i 50,61,62,...%,

wheresi denotes one of the elements inS5$0,1% andH0 ,H1

are the two original horizontal rectangles inD. Moreover, an
address which is a bi-infinite sequence of two symbols$0,1%
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~in S2) can be attached to every pointp in the invariant set
Lh , which will not only describe its location, but also tell i
whole history and future under iteration of the map. By th
we mean that there is a mapf:Lh→S2 defined by

f~p!5~ ...,s2n ,...,s21 ;s0 ,s1 ,...,sn ,...!,

wheresi50 if hi(p)PH0 andsi51 if hi(p)PH1 .
One easy way to imagine the invariant setLh is to draw

the regions that remain trapped for one forward and
backward iteration in the squareD. This is the intersection
of the thickest vertical and horizontal strips, so it is fo
squares lying in the corners of the original square. The
trapped for two iterations forwards and two backwards
obtained by intersecting the thinner strips of these figu
yielding sixteen smaller squares contained in the f
squares of the first stage. See Fig. 30. Notice the addre
that have been assigned to those squares. This process c
repeated ad infinitum. After infinitely many steps, what
mains is a Cantor set of points which are in one-to-one c
respondence with the set of bi-infinite sequences of two s
bols $0,1% shown above.

For the Poincare´ mapP, we can use a similar techniqu
to visualize the invariant setL and its associated set of b
infinite sequences. Instead of one squareD, we have four
squaresUi ,151,2,3,4. After one forward and one backwa
iteration, instead of the intersections of two vertical re
angles and two horizontal rectangles, we have the inter
tions of eight families of vertical strips$Vn

ji % and eight fami-
lies of horizontal strips $Hn

i j %, with the indices i j
corresponding to the nonzero entries of the transition ma
A. Recall from Sec. IV A that for$Vn

ji % the indexj i indicates
that the family is in the squareU j , and it came from the
squareUi ; for $Hn

i j %, the indexi j indicates that the family is
in the squareUi and it will go to the squareU j . See Fig. 31
~Plate 8!.

For simplicity of illustration, we draw Fig. 31~Plate 8!
schematically. Taking the family$Hn

12% as an example, we
draw two horizontal rectangles to represent the first and
n-th horizontal strips. This horizontal family is in the squa
U1 and it will go to the squareU2. Similarly, for $Vm

13%, only
the first and them-th vertical rectangles are shown. Th
vertical family is in the squareU1 and it came from the
squareU3 . The same method has been used to illustrate
the other families of horizontal and vertical strips.

FIG. 30. The invariant setLh of the horseshoe maph.
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As for assigning the addresses for points remaining
U, take the ‘‘square’’Qm;n

3;12 as an example. SinceQm;n
3;12 is the

intersection of the horizontal stripHn
12 and the vertical strip

Vm
13, we can use (...,u3 ,m;u1 ,n,u2 ,...) to represent its lo-

cation. As usual, the central block of this sequence also t
the history of the points in this ‘‘square’’ (Qm;n

3;12).

~1! they are currently inU1 and will go toU2 and on their
way their projection will wind aroundL1 for (n1r min)
revolutions wherer min is the minimum number of revo
lutions discussed earlier in Sec. IV A.

~2! they came fromU3 and their projection has woun
aroundL1 for (m1r min) revolutions.

Similar sequences can be assigned to the o
‘‘squares’’ which are the intersections of all the other ho
zontal and vertical strips.

Moreover, since the Poincare´ mapP satisfies the gener
alized Conley–Moser conditions, this process can be
peated ad infinitum as in the case of the horseshoe m
After an infinite number of steps, what remains inU is a
Cantor set of points which are in one-to-one corresponde
with the set of bi-infinite sequences,

„...,~ui 21
,n21!;~ui 0

,n0!,~ui 1
,n1!,~ui 2

,n2!,...….

Hence, we have shown that the invariant setL for the
Poincare´ mapP corresponds to a set of bi-infinite sequenc
with two families of symbols. The first family is a subshift o
finite type with four symbols$u1 ,u2 ,u3 ,u4% ~with a transi-
tion matrixA defined at the beginning of Sec. IV!. It is used
to keep track the history of the mapP with respect to the
four squaresU1 ,U2 ,U3 ,U4 .

The second family is a full shift of infinite type with
symbols of non-negative integers. This set of integers is u
to keep track of an individual member of each vertical
horizontal family ($Vn

ji % or $Hn
i j %). As mentioned at the end

of Sec. IV A, this set of integers also corresponds to
number of revolutions that the projection of an orbit win
around eitherL1 andL2 .

1. Singular Poincare ´ map

Now we shall discuss briefly the issue of the singu
Poincare´ map and how it relates to certain modifications
the space of symbol sequencesS. Let S5$„(ui j

,nj )…% be the
set of bi-infinite sequences of elements ofS3N with a tran-
sition matrixA defined onS. Here,S5$u1 ,u2 ,u3 ,u4% andN
is the set of non-negative integers. As usual, a compactifi
tion S̄ of S is obtained with the inclusion of sequences of t
following types:

b5„...;~ui 0
,n0!,...,~ui k

,`!…,

g5„`,~ui 2 l
,n2 l !,...;~ui 0

,n0!,...…,

d5„`,~ui 2 l
,n2 l !,...;~ui 0

,n0!,...,~ui k
,`!….

The elements ofS,S̄ will be called type a from now on.
Moreover, the shift maps on S defined by s((ui j

,nj ))
5(ui j 11

,nj 11) can be extended to a shift maps̄ in a natural
way. The domain ofs̄ is



t

i-
e

f
w
it

ec
IV

lo
ni
of
co
r

-
Le

n
a

a
its
it
g

ith

s

e
or
re
t-

is

he

of

er
d

ch
C.

n-
n-
fer

the

res

er

e
um

s

our
for

-

448 Chaos, Vol. 10, No. 2, 2000 Koon et al.
D~ s̄ !5$~u,n!PS̄un0Þ`%

and the range ofs̄ is

R~ s̄ !5$~u,n!PS̄un1Þ`%.

By studying the Fig. 31~Plate 8!, it should be clear tha
H`

12 ~or H`
11) is simply the horizontal curveGL1,1

s,S which is on

the interior~Sun! region branch of the stable invariant man
fold of the L1 Lyapunov orbit and any point on this curv
will be carried forward asymptotically towards theL1

Lyapunov orbit. Hence, any element of typeb corresponds
to an orbit which tends to either theL1 or L2 Lyapunov orbit
asymptotically afterk iterations. Similarly, any element o
type g corresponds to an orbit which is carried by the flo
asymptotically backward towards one of the Lyapunov orb
after l backward iterations. As for an element of typed, we
have either a homoclinic or a heteroclinic orbit.

D. Global orbit structure

Now we are ready to put together all the results in S
IV B and Sec. IV C and to state the main theorem of Sec.
which provides a symbolic dynamics description of the g
bal orbit structure of the PCR3BP near a chain of homocli
orbits and a symmetric heteroclinic cycle. For simplicity
exposition, we have assumed in the past that the chain
sists of ~1,1!-homoclinic orbits in the interior and exterio
regions and a symmetric~1,1!-heteroclinic cycle in the Jupi
ter region. Now we shall consider the general situation.
us suppose from now on that the chainC is made up of a
symmetric (q2 ,p2)-heteroclinic cycle in the Jupiter regio
together with two homoclinic orbits, one of which is
(q1 ,p1) orbit in the interior region and the other is a (q3 ,p3)
orbit in the exterior region.

Theorem 4.2: Consider an element(u,r )PS̄ with r j

>r min for all j . Then there are initial conditions, unique in
neighborhood of the given chain of two homoclinic orb
and one symmetric heteroclinic cycle (associated w
p1,1, p2,2, p1,2, p2,1, respectively), such that the followin
statements are true.

~1! For an element of the type
a5„...,~ui 21

,r 21!;~ui 0
,r 0!,~ui 1

,r 1!,~ui 2
,r 2!,...…,

the orbit corresponding to such conditions starts at Ui 0
and goes to Ui 1 if (A) i 0i 1

51. This orbit passes through

either the equilibrium regionR1 or R2 depending on
whether the initial index i0 is 1,3 or 2,4. If i 051,3, the
projection of the orbit winds around L1 for r 0 revolu-
tions inside the regionR1 before leaving for Ui 1. Oth-

erwise, it winds around L2 for r 0 revolution before leav-
ing for Ui 1

. After that, the same process begins w

(ui 1
,r 1) in place of (ui 0

,r 0) and (ui 2
,r 2) in place of

(ui 1
,r 1), etc. For negative time a similar behavior i

described for(ui 21
,r 21), (ui 0

,r 0), etc.
For this orbit, the number of revolutions that th

comet winds around Jupiter or the Sun (in the interior
exterior region) is a constant which depends on the
gion and the given chain of homoclinic orbits and he
s

.

-
c

n-

t

h

-

eroclinic cycle. For the Jupiter region, the number
(q21p221)/2. For the interior and exterior regions,
the number is q11p121 and q31p321, respectively.
Note that qi and pi are positive integers.

~2! For an element of the type

b5„...;~ui 0
,r 0!,...,~ui k

,`!…,

the orbit tends asymptotically towards one of t
Lyapunov orbits after k iterations. If ui k51,3, the orbit

tends towards the L1 orbit and stays in regionR1 . If
ui k

52,4, it tends towards the L2 orbit and stays in re-

gion R2 .
~3! For an element of the type

g5„`,~ui 2 l
,r 2 l !,...;~ui 0

,r 0!,...…,

the orbit tends asymptotically backward towards one
the Lyapunov orbits after l backward iterations. If ui 2 l

51,2, the orbit tends towards the L1 orbit and stays in
region R1 . If ui 2 l

53,4, it tends towards the L2 orbit

and stays in regionR2 .
~4! For an element of the type

d5„`,~ui 2 l
,r 2 l !,...;~ui 0

,r 0!,...,~ui k
,`!…,

the orbit tends asymptotically towards the L1 or L2

Lyapunov orbit after k iteration, depending on wheth
ui k

51,3 or 2,4. It also tends asymptotically backwar

towards the L1 or L2 orbit after l iterations backwards,
depending on whether ui l

51,2 or 3,4.

We shall provide a sketch of the proof here, whi
makes use of the major results in Sec. IV B and Sec. IV
While we still need to fully establish the fact that the Poi
carémapP does satisfy the generalized Conley–Moser co
ditions as mentioned at the end of Sec. IV B, we shall de
their proofs to Sec. IV F so that we can discuss first
implications of this theorem.

Proof: First construct a Poincare´ map P whose domain
U consists of four different squaresUi , i 51, 2,3,4. Squares
U1 andU4 are contained in the surfacey50 and they center
around (q1 ,p1) and (q3 ,p3)-transversal homoclinic points
in the interior and the exterior region, respectively. Squa
U2 andU3 are contained in the surfacex512m and center
around (q2 ,p2)-transversal heteroclinic points in the Jupit
region which are symmetric with respect to each other.

Adjust the widths of all the corresponding pairs of th
thin strips on the bounding spheres so that the minim
number of revolutionsr min aroundL1 or L2 is the same for
all the Ui ’s. With this adjustment, any orbit which pierce
Vm

ji is now inU j . It came fromUi and has wound aroundL1

~if ui51,3) orL2 ~if ui52,4) for (m1r min) times. A similar
analysis holds forHn

ji .
Assume that we have shown that the Poincare´ map P

satisfies the generalized Conley–Moser conditions. Then
discussion in Sec. IV C on symbolic dynamics shows that
any bi-infinite sequence of typea, a5(u,r ), we can find
initial conditions (u,n) in U such that the orbit with this
initial condition has exactly the history of (u,r ). Here, r j

5nj1r min . Similar arguments also hold for bi-infinite se
quences of other types.
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FIG. 32. ~Color online! ~a! The homoclinic-heteroclinic chain corresponding to the Jupiter cometOterma. ~b! The actual orbit ofOterma~AD 1910–1980!
overlaying the chain.
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1. Some additional comments on the implications of
the theorem

Type a orbits include ‘‘oscillating,’’ ‘‘capture’’ and
‘‘nontransit’’ orbits. Recall that oscillating orbits are orbi
which cross from one region to the other infinitely ma
times, capture orbits are orbits which cross sometime
eventually stay in one region, and nontransit orbits alw
stay in the same region. Typeb and type g orbits are
asymptotic orbits which wind on and off one of th
Lyapunov orbits. Typed orbits are homoclinic and hetero
clinic orbits.

Similar to the standard textbook example, it is easy
verify that both the shift maps̄ and the Poincare´ mapP have
the following properties:~1! a countable infinity of periodic
orbits of all periods,~2! an uncountable infinity of nonperi
odic orbits, and~3! a ‘‘dense orbit.’’

Moreover, boths̄ andP model the phenomenon that
called deterministic chaosin dynamical systems theory
Most notably, they exhibit the phenomenon of sensitive
pendence on initial conditions, i.e., the distance betw
nearby initial conditions grows under some fixed number
iterates. This phenomenon corresponds to the ‘‘rando
jumping of the comets between the interior, the Jupiter,
the exterior regions.

E. Numerical construction of orbits with prescribed
itineraries

Throughout this paper, we have been developing
framework for understanding transport in the PCR3BP. F
damental to our approach has been the homoclin
heteroclinic chain, those objects which are the union of t
homoclinic orbits and a symmetric heteroclinic cycle. Ea
in our investigations, we noticed the similarity between o
servations of actual comet orbits likeOterma and
homoclinic–heteroclinic chains of the same energy. See
32. Noting this similarity, we deduced that the same dyna
ics governing the motion of the comets was at work in
ut
s

o

-
n
f
’’
d

a
-
–
o

-

g.
-

e

chains. By exploring and cataloguing the phase space ob
related to the chain, we gain insight into the dynamics of
temporary capture and resonance transition of actual com

In this section, we make this observation more concr
by exploring the complex orbit structure in the neighborho
of a chain. What we have found is an invariant set of orb
to each of which we can attach an itinerary@e.g.,
(...,X,J,S,J,...) in theinformal notation# describing the fu-
ture and past history of the orbit for all time. Furthermo
Theorem 4.1 shows us that all permissible itineraries exis
the neighborhood of a chain.

The invariant set is a theoretical construct, and thou
useful for guiding our understanding and classification of
dynamics, its infinite nature renders it powerless to prov
us with usable trajectories. Computational and numer
methods must be brought to bear which iteratively appro
mate the invariant set.

1. Numerical construction of orbits with prescribed
itineraries

The description of the construction of the invariant set
Sec. IV C involved successive iterations of the Poincare´ map
P. Finite areas of finite central block itineraries evolved u
der successive application of the mapP into a ‘‘cloud of
points,’’ the invariant setL of points with bi-infinite itiner-
aries. If we truncate the construction of the invariant set
some finite number of iterations ofP, we will find regions of
phase space which have a certain finite itinerary. Orbits
such regions will be robust. More specifically, the essen
feature of the orbit, its itinerary, will be robust because
the nearby orbits in phase space have the same finite iti
ary. Thus, by truncating our construction of the invariant
L at some finite number of applications ofP, we can gen-
erate a set of robust orbits with different finite itinerarie
The sets of orbits with different itineraries are easily visu
izable on our chosen Poincare´ section as areas in which a
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the orbits have the same finite itinerary. We will also
longer be limited to a small neighborhood of a chain, but c
obtain more global results.

2. Example itinerary: „X,J ,S,J ,X…

In what follows, we shall illustrate the numerical co
struction of sets of orbits with prescribed itineraries. W
shall of course be limited to an itinerary of finite size,
central block. However, using our simple procedure, the s
of this central block can be arbitrarily large. We shall use
less formal sequence notation using the symbols$S,J,X% to
denote the location of the orbit in the interior~Sun!, Jupiter,
or exterior regions, respectively.

As our example, we shall construct an orbit with t
central block (X,J,S,J,X) which roughly corresponds to th
behavior of cometOterma~1910–1980! with respect to the
Sun–Jupiter system. This central block denotes an o
which went from the exterior region into the interior~Sun!
region via the Jupiter region, and will then return to t
exterior region via the Jupiter region.

We seek regions of phase space which have the
quences (...,X,J,S,J,X,...) with the central block
(X,J,S,J,X). We shall therefore systematically seek regio
on a suitably chosen Poincare´ section which correspond t
this central block. We shall takeC53.038~just belowC2 in
case 3! as our Jacobi constant. We choose this Jacobi c
stant because, though it differs fromOterma’s (C53.03), it
makes the visualization easier and preserves the dynami
Oterma’s transition. Moreover, in order to link the prese
numerical construction with the earlier theoretical fram
work and terminology, we shall adopt the following conve
tion. TheU1 and U4 ~Poincare´! sections will be the plane
(y50,x,0) in the interior region, and (y50,x,21) in the
exterior region, respectively. TheU2 andU3 sections will be
the planes (x512m,y,0) and (x512m,y.0) in the Ju-
piter region, respectively.

In Fig. 33, we show the first few transversal Poinca´

FIG. 33. ~Color online! The first few transversal cuts of theL1 ~stable! and
L2 ~unstable! Lyapunov orbit manifolds on theU3 section in the Jupiter
region. Notice the intersection region, in which all orbits have the cen
block itinerary (X;J,S).
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cuts of theL1 and L2 Lyapunov orbit manifolds on theU3

section in the Jupiter regionJ. Note that the Poincare´ map is
area preserving owing to the Hamiltonian nature of the fl
and the particular choice of the Poincare´ section. Notice that
there is an intersectionDJ for p1q56, wherep51 is the
cut number for theL1 Lyapunov orbit stable manifold and
q55 is the cut number for theL2 Lyapunov orbit unstable
manifold. The interiorDL1,1

s,J of GL1,1
s,J ~the first cut of theL1

Lyapunov orbit stable manifold! is connected to the spherica
cap d1,2

1 of the bounding spheren1,2 by the stable manifold
tubeWL1 ,p.o.

s,J . Hence,DL1,1
s,J contains all the orbits that will go

from the Jupiter region to the interior~Sun! region during
their next close approach to theL1 equilibrium region. Simi-
larly, the interior DL2,5

u,J of GL2,5
u,J ~the fifth cut of the L2

Lyapunov orbit unstable manifold with thex512m plane,
following the convention of Sec. III! is connected to the
spherical capd2,1

2 of the bounding spheren2,1 by the unstable
manifold tubeWL2 ,p.o.

u,J . Thus, DL2,5
u,J contains all the orbits

that entered the Jupiter region from the exterior region a
have completed two revolutions around Jupiter.

Therefore, the intersection

DJ5DL1,1
s,J ùDL2,5

u,J

contains all the orbits that have come from the exterior
gion X into the Jupiter regionJ, have gone around Jupite

2 1
2(5(p1q21)/2) times, and will enter the interior regio

S. The regionDJ is the intersection of the image of th
spherical capd2,1

2 and the pre-image of the spherical ca
d1,2

1 . Therefore, from the discussion in Sec. II, we know th
orbits contained in the intersectionDJ are those which en-
tered theL2 equilibrium regionR2 from the exterior region
X and which will exit theL1 equilibriumR1 into the interior
regionS. The orbits are currently in the Jupiter regionJ. We
can therefore attach the central block label (X;J,S) to the
intersectionDJ.

To determine regions of phase space with additio
symbols of our desired central block, we take the (X;J,S)
region and evolve it forward under the equations of mot
until it intersects theU1 section in the interior region. In Fig
34 we show this Poincare´ section. Notice that the (X,J;S)
region lies entirely within the interiorDL1,1

u,S of the first inte-

rior region cutGL1,1
u,S of theL1 Lyapunov orbit unstable mani

fold. We also see that a couple of segments of the (X,J;S)
region intersect the interiorDL1,1

s,S of the first interior region

stable manifold cutGL1,1
s,S . Any orbit within DL1,1

s,S , and there-

fore within the stable manifold tubeWL1 ,p.o.
s,S , will be brought

back to the Jupiter region. These intersecting segmentsDS

therefore carry the label (X,J;S,J) and bring us one symbo
closer (J) to our desired central block.

We take the larger of the two intersecting segments
evolve it forward in time until it re-enters the Jupiter regio
and intersects theU2 Poincare´ section. See Fig. 35. Notice
that the (X,J,S;J) region~the image of the larger segment o
DS) lies entirely within the interiorDL1,1

u,J of the first Jupiter

region cutGL1,1
u,J of theL1 Lyapunov orbit unstable manifold

This thin filament has a segment intersecting the inte

l
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FIG. 34. ~Color online! ~a! Taking the (X;J,S) region of theU3 Poincare´ section~see Fig. 33!, we evolve it until it intersects theU1 Poincare´ section in the
interior region~lightly shaded!. ~b! A close-up of the intersection of the (X,J;S) region with the interiorDL1,1

s,S of GL1,1
s,S , the first stable manifold cut of theL1

Lyapunov orbit. Note the regions labeled (X,J;S,J), which will return to the Jupiter region.
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DL2,5
s,J of the Poincare´ cut GL2,5

s,J of the L2 Lyapunov orbit

stable manifold. Any orbit in this intersection regionD will
escape from Jupiter into the exterior region. Thus, any o
in this segmentD can be labeled with the central bloc
(X,J,S;J,X), which is our desired finite itinerary.

We have forward and backward integrated an initial co
dition within this region to illustrate the characteristics of
orbit corresponding to the (X,J,S;J,X) region. See Fig. 36
Orbits in the region are considered robust because ne
orbits have the same finite itinerary. Regions correspond
to other allowable itineraries of any length can also be g
erated with this same systematic procedure. Not only do
know such orbits exist, but we have a relatively simp
method for producing them.
it

-

by
g
-
e

F. The Poincaré map satisfies the generalized
Conley-Moser conditions

The proof that the Poincare´ mapP satisfies the general
ized Conley–Moser conditions follows the same pattern
the proof given in LMS.5 We shall provide a sketch her
mainly for the convenience of the reader. For more deta
see Moser.10

1. Strip condition

The fact that the Poincare´ mapP satisfies the strip con
dition follows from the lemma below. Since we have a h
eroclinic cycle in our case, the proof of this crucial lemma
slightly different from the proof in LMS.5 Hence, more detail
will be provided here.
s

FIG. 35. ~Color online! ~a! Taking the (X,J;S,J) region of theU1 Poincare´ section~see Fig. 34!, we evolve it until it intersects theU2 Poincare´ section
(x512m,y,0) in the Jupiter region~lightly shaded!. Part~b! shows a close-up of the intersection of the (X,J,S;J) region with the interiorDL2,5

s,J of GL2,5
s,J ,

the fifth stable manifold cut of theL2 Lyapunov orbit. Note the region labeled (X,J,S;J,X), which will return to the exterior region. This region contain
orbits with the desired finite itinerary.
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FIG. 36. ~Color online! ~a! An orbit with the itinerary (. . . ,X,J,S,J,X, . . . ) computed using an initial condition inside theD region of theU2 section~see
Fig. 35!. ~b! A close-up of this orbit in the Jupiter region.
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Lemma 4.3: The Poincare´ map P maps horizontal strip
to vertical strips, i.e.,

P~HC1,n!5VB1,n8 , P~HD1,n!5VH1,n8 ,

P~HC2,n!5VB2,n8 , P~HD2,n!5VH2,n8 ,

P~HE1,n!5VA1,n8 , P~HF1,n!5VG1,n8 ,

P~HE2,n!5VA2,n8 , P~HF2,n!5VG2,n8 ,

for all positive integer n.
Proof: We illustrate the methods for the caseP(HE1,n)

5VA1,n8 . Since this case involves the heteroclinic cycle, it
typical in our study. The other cases can be proved simila

Recall that the equations of the PCR3BP have a sym
try s which we have used earlier to construct the stable m
fold out of the unstable manifold. Since the heteroclin
cycle in our chain is a symmetric one, we shall have
following relation:

P215s21+P+s,

wheres is regarded as the symmetrys restricted to the do-
mainU of the Poincare´ map. Notes5s21. In the following,
we shall regard all operations on sets as taking place inU.

Also recall that

HE1,n,P21
„~C1ùA18!ø~D1ùA18!…

5sPs„~C1øD1!ùA18…5sP„D1ù~A18øB18!….

But P„D1ù(A18øB18)… is the family of vertical strips inH18 .
It is equal toP(D1)ùH18 . Therefore, we have

HE1,n,s„P~D1!ùH18…5sP~D1!ùE1

5P21s~D1!ùE15P21~A18!ùE1 .

Applying the Poincare´ map on both sides, we obtain

P~HE1,n!,A18ùP~E1!5øn50
` VA1,n8 . ~4.1!

Similarly, we have
y.
e-
i-

e

P21~VA1,n8 !5sPs~VA1,n8 !5sP~HD1,n!,s~øn50
` VH1,n8 !

5øn50
` HE1,n .

Therefore,

VA1,n8 ,øn50
` P~HE1,n!. ~4.2!

Using the relations~4.1! and ~4.2! we find that

øn50
` P~HE1,n!5øn50

` VA1,n8 .

Since the strips of the typeHE1,n or VA1,n8 are pairwise
disconnected, each one of the stripsHE1,n must be mapped
by P onto one of the stripsVA1,m8 . It remains to show that
m5n.

Let g be a diagonal line in the squareE1ùB28 . Clearly,
g intersectsHE1,n for all n. Pick a pointgn in each inter-
sectiongùHE1,n . Recall that$HE1,n% is ordered with re-
spect to its distance from the longer edgeeE of the rectangle
E1 . Therefore, the set$gn% can be made into an ordered s
(g0 ,g1 ,...,gn ,...) with respect to the ordering by distanc
from the pointgn to the edgeeE .

After one iteration byP,

gùøn50
` HE1,n is mapped into P~g!ùøn50

` VA1,n8 .

The key observation is that sinceP(g) spirals inward from
the longer edgeeA of the rectangleA18 , the set$P(gn)% can
also be made into an order set„P(g0),P(g1),...,P(gn),...…
with respect to the distance from the pointP(gn) to the edge
eA . Recall that~1! everyVA1,m8 must contain one and only
oneP(g) and~2! $VA1,m8 % is also ordered with respect to it
distance from the longer edgeeA .

It follows from this thatm5n.

2. Hyperbolicity condition

As pointed out earlier, for the standard textbook exam
~introduced in Sec. IV A!, it is well known that if the first
return mapf̄ ~induced byf ) on the squareQ satisfies the
Conley–Moser Conditions 1 and 2, then there exists an
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variant setL f̄ of Q on which f̄ has chaotic dynamics. How
ever, a direct verification of whetherf̄ satisfies Condition 2
or not is nontrivial. When one thinks of the stretching a
contraction of maps, it is natural to think of the properties
the derivative of the map (D f̄ ) at different points. Hence
when the mapf̄ is continuously differentiable, Condition 2 i
usually replaced by another equivalent condition~Condition
3! that is based solely on the properties of the derivative of̄ .
Compared with Condition 2, Condition 3 is easier to che
While we shall state only the Generalized Condition 3 in
following, the standard Condition 3 is exactly the same w
a couple of obvious modifications.

Define the unstable sector bundleS u ~in the tangent
bundleTU) over the families of the horizontal strips as fo
lows:

S q
u5$~v,w!PTpUuuvu<kuwu%,

where 0,k,1/2 andq is a point in a horizontal strip. Simi
larly, the stable sector bundleS s over the families of the
vertical strips is defined as

S q
s5$~v,w!PTpUuuwu<kuvu%,

whereq is a point in a vertical strip. Then the Poincare´ map
P is said to satisfy theGeneralized Condition 3if the fol-
lowing two conditions are met.

~a! DP(S q
u),S P(q)

u and uw1u>k21uw0u where (v1 ,w1) is
the image of (v0 ,w0) underDP; i.e., the vertical com-
ponent of a tangent vector gets amplified at least
k21 underDP.

~b! Similarly, DP21(S q
s),S P21(q)

s and uv21u>k21uv0u
where (v21 ,w21) is the image (v0 ,w0) underDP21;
i.e., the horizontal component of a tangent vector g
amplified at least byk21 underDP21.

Since the Generalized Condition 3 is based solely on
local properties of the derivative of a map, the proof th
Generalized Conditions 1 and 3 imply Generalized Condit
2 is essentially the same as the standard proof that the C
ditions 1 and 3 imply Condition 2 with some obvious mod
fications and hence will be skipped. For more details on
standard case, see Moser10 and Wiggins.15

As for the proof that the Poincare´ map P satisfies the
Generalized Condition 3, the key observation is that all
stretching and contraction by the mapP takes place inside
the equilibrium regionsR1 and R2 . Recall that Ri is
bounded by pairs of spheresni ,1 andni ,2 ~for i 51,2) which
contains the domainU of the mapP ~or more accurately four
squares whose union is diffeomorphic toU). See Figs. 8
~Plate 4! and 25~Plate 7!. Inside these equilibrium regions
the flow is exactly given by the linear equations~see Sec.
II C! in suitable coordinates. This flow satisfies the gene
ized Condition 3 with a constantk that can be chosen a
large as desired provided thatU is sufficiently small.
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V. RESONANCE TRANSITIONS

A. Introduction

Our new dynamical mechanism effecting transfer b
tween the interior and exterior regions is the heterocli
intersection between theL1 andL2 Lyapunov orbit manifold
tubes in the Jupiter region. As mentioned previously,
orbits interior to these tubes are the transit orbits of e
equilibrium region. Therefore, their intersection is a set
orbits which come from one heliocentric region (S or X) and
exit to the other (X or S).

This was an unexpected result. It was previously b
lieved that a third degree of freedom was necessary for re
nance transition or that ‘‘Arnold diffusion’’ was someho
involved. But as we have seen, only the planar CR3BP
necessary. The dynamics and phase space geometry invo
in the heteroclinic connection now give us a language w
which to discuss and further explore resonance transition

The dynamical channels discussed in previous sect
are a generic transport mechanism connecting the inte
and exterior Hill’s regions. We shall now focus on a limite
case of this generic transport mechanism; the case of tr
port between resonances. In particular, we shall study h
this homoclinic–heteroclinic transport mechanism conne
the mean motion resonances of the interior and exterior
gions~e.g., the 3:2 and 2:3 Jupiter resonances! via the Jupiter
region.

Using numerical exploration of the heteroclinic conne
tion between the interior and exterior resonances, we s
obtain a deeper understanding of the mean motion reson
transition of actual Jupiter comets. In particular, we shall
to explain in more precise terms the sense in whichOterma
transitions between the 3:2 and 2:3 resonances. In the
cess, we shall discover much about the mixed phase s
structure, especially the mean motion resonance structur
the PCR3BP.

Recall that in Sec. III F we constructed a homoclini
heteroclinic chainC for the Sun–Jupiter system and with
Jacobi constant value similar to that of cometOtermaduring
its Jupiter encounters (C53.03). See Figs. 2~Plate 1! and
32. This chain is a union of four orbits: an interior regio
orbit homoclinic to theL1 Lyapunov orbit, an exterior region
orbit homoclinic to theL2 Lyapunov orbit, and a symmetric
heteroclinic cycle~two orbits! connecting theL1 and L2

Lyapunov orbits. For simplicity of exposition, we chose th
particular chain because both of its homoclinic orbits are
the ~1,1!-type and were constructed using the first Poinc´
cuts of their respective stable and unstable manifolds. L
iting our chain to~1,1!-type meant, for this particular energ
regime, that two different resonance connections were p
sible; 3:2 to 1:2 and 3:2 to 2:3. We chose the 3:2 to 2:3 ch
for our exploration.

Theorem 4.1, or more accurately its simplified versio
tells us that in a neighborhood of this particularC, there
exists an orbit O whose symbolic sequenc
(...,J,X,J,S,J,...) isperiodic and has a central block itine
ary (J,X,J,S,J). Because this orbit transitions between t
interior and exterior regions~the neighborhood of the 3:2 an
2:3 resonances, in particular!, we call this kind of itinerary a
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FIG. 37. ~Color online! ~a! The orbitO8, with itinerary (J,X,J,S,J), in the rotating frame.~b! The orbitO8 in the heliocentric inertial frame.~c! Plot of a
vs t for the orbitO8. Important mean motion resonances 3:2 and 2:3 are also shown for comparison.
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resonance transition block. This orbit makes a rapid tra
tion from the exterior region to the interior region and vi
versa, passing through the Jupiter region. It will repeat
pattern ad infinitum.

We have commented earlier that while an orbit with th
exact itinerary is very fragile, the structure of nearby orb
whose symbolic sequences have a central block like the o
O, namely (J,X,J,S,J), is quite robust. In fact, we hav
devised simple procedures to construct sets of orbits w
such specific characteristics~as encoded in the central bloc
itinerary! in the previous section.

We will study how this particular chainC and its nearby
dynamical channels connect the 3:2 resonance of the inte
region and the 2:3 resonance of the exterior region.

1. Delaunay variables

Recall that the PCR3BP is a perturbation of the tw
body problem. Hence, outside of a small neighborhood
L1 , the trajectory of a comet in the interior region follow
essentially a two-body orbit around the Sun. In the helioc
tric inertial frame, the orbit is nearly elliptical. The mea
motion resonance of the comet with respect to Jupite
equal toa23/2 wherea is the semi-major axis of this ellipti
cal orbit. Recall that the Sun–Jupiter distance is normali
to be 1 in the PCR3BP. The comet is said to be inp:q
resonance with Jupiter ifa23/2'p/q, where p and q are
small integers. In the heliocentric inertial frame, the com
makes roughlyp revolutions around the Sun inq Jupiter
periods. See Fig. 37, where we illustrate a numerically c
structed orbit O8, which has a central block sequen
(J,X,J,S,J). Similar observations also hold for orbits in th
exterior region outside of a small neighborhood ofL2 .

To study the process of resonance transition, we s
use a set of~rotating! canonical coordinates, called Delaun
variables, which make the study of the two-body regime
motion particularly simple, and thus simplify the perturb
tion arguments for the PCR3BP. Tradition holds that the D
launay variables in the rotating coordinates are deno
l , ḡ, L, andG. The bar ong distinguishes it from its non-
rotating counterpart. See Fig. 38. The quantityG is the an-
gular momentum, whileL is related to the semi-major axi
a, by L5a1/2, and hence encodes the mean motion re
nance~with respect to Jupiter in the Sun–Jupiter system!.
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Both l and ḡ are angular variables defined modulo 2p. The
angleḡ is the argument of the perihelion relative to the r
tating axis. The anglel is the mean anomaly. It is the ratio o
the area swept out by the ray from the Sun to the com
starting from its perihelion passage to the total area.
more detail, see Szebehely,14 Abraham and Marsden,11 and
Meyer and Hall.12

B. Interior and exterior resonances
1. Interior resonances

Figure 39 shows the first Poincare´ cuts of the stable and
unstable manifolds of anL1 Lyapunov orbit with theU1

section (y50,x,0). They have been plotted using Delaun
variablesL and ḡ.

The striking thing is that the first cuts of the stable a
unstable manifolds intersect exactly at the region of the
resonance. Recall that the interiorDL1,1

s,S of GL1,1
s,S ~the first cut

of the stable manifold! is connected to the spherical capd1,1
1

of the bounding spheren1,1 by the stable manifold tube
Hence,DL1,1

s,S contains all the orbits that will go from the

interior ~Sun! region to the Jupiter region during the ne
close approach to theL1 equilibrium region. Similarly, the
interior DL1,1

u,S of GL1,1
u,S ~the first cut of the unstable manifold!

contains all the orbits that came from the Jupiter region i
the interior~Sun! region during their previous close approa
to the L1 equilibrium region. Therefore, their intersectio

FIG. 38. ~Color online! Geometry of the Delaunay variables. Elliptical o
bits in the fixed~inertial! and rotating frames.
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FIG. 39. ~Color online! The interior regionU1 Poincare´ section showing the first cuts of the stable (GL1,1
s,S ) and unstable (GL1,1

u,S ) manifolds of anL1 Lyapunov
orbit. Notice their intersection at the 3:2 resonance. The background points reveal the mixed phase space of stable periodic and quasiperiodic tor‘islands’’
embedded in a bounded chaotic ‘‘sea.’’
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1:2
DS5DL1,1
s,S ùDL1,1

u,S contains all the orbits that have come fro

the Jupiter regionJ into the interior regionS, gone around
the Sun once~in the rotating frame!, and will return to the
Jupiter region. In the heliocentric inertial frame, these orb
are nearly elliptical outside a neighborhood ofL1 . See Fig.
37. They have a semi-major axis which corresponds to
resonance by Kepler’s law~i.e., a23/25L23'3/2). There-
fore, any Jupiter comet which has an energy similar toOter-
ma’s and which circles around the Sun once in the inter
region must be in 3:2 resonance with Jupiter.

Also note that the pointPS , which is on the boundary o
DS, is a symmetric~1,1!-homoclinic point which we have
used to construct the symmetric~1,1!-homoclinic orbit in
Fig. 2 ~Plate 1!. This also explains the reason for marking
as a homoclinic orbit which corresponds to the 3:2 re
nance.

The black background points in Fig. 39 reveal the ch
acter of the interior region phase space for this Jacobi c
stant surface. They were generated by picking one hund
evenly spaced initial points along they50, ẋ50 line ~with
the same Jacobi constantC53.03). These initial points were
each integrated for several hundred iterations of the Poin´
map on theU1 section and then transformed into Delaun
variables.

The background points reveal a mixed phase spac
stable periodic and quasiperiodic tori ‘‘islands’’ embedded
a bounded chaotic ‘‘sea.’’ The families of stable tori, whe
a ‘‘family’’ denotes those tori islands which lie along a str
of nearly constantL, correspond to mean motion resonanc
s

:2

r

-

-
n-
ed

re

of

.

The size of the islands of tori corresponds to the dynam
significance of the resonance. The number of tori islan
equals the order of the resonance~e.g., 3:2 is order 1, 5:3 is
order 2!. In the center of each island, there is a point cor
sponding to an exactly periodic, stable, resonant orbit.
between the stable islands of a particular resonance~i.e.,
along a strip of nearly constantL), there is a saddle poin
corresponding to an exactly periodic, unstable, resonant
bit.

A subset of the interior resonance intersection regionDS

is connected to exterior resonances through a heteroc
intersection in the Jupiter region. We have plotted this sub
as the small strip insideDS. This subset is part of the dy
namical channel which connects the interior and exte
resonances. This is the robust resonance transition me
nism which we have sought. More on the resonance tra
tion will be discussed below.

2. Exterior resonances

Similar to Fig. 39 for the interior region, Fig. 40 show
the first exterior region Poincare´ cuts of the stable and un
stable manifolds of anL2 Lyapunov orbit with theU4 sec-
tion on the same Jacobi constant surface (C53.03). They
have been plotted, as before, using the Delaunay variablL
and ḡ.

Notice that the first cuts of the stable and unstable ma
folds intersect at two places; one of the intersections is
actly at the region of the 2:3 resonance, the other is at the
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FIG. 40. ~Color online! The exterior regionU4 Poincare´ section showing the first cuts of the stable (GL2,1
s,X ) and unstable (GL2,1

u,X ) manifolds of anL2 Lyapunov
orbit. Notice their intersections at the 2:3 and 1:2 resonances. The background points reveal a mixed phase space similar to that of Fig. 39.
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resonance. We point out thatḡ is an angle variable modulo
2p and hence the two intersections nearL51.26 should be
identified.

Recall that the interiorDL2,1
s,X of GL2,1

s,X ~the first cut of the

stable manifold! is connected to the spherical capd2,2
1 of the

bounding spheren2,2 by the stable manifold tube. Henc
DL2,1

s,X contains all the orbits that will go from the exterio

region to the Jupiter region in the next round. Similarly, t
interior DL2,1

u,X of GL2,1
u,X ~the first cut of the unstable manifold!

contains all the orbits that have come from the Jupiter reg
into the exterior region in the previous round. Therefo
their intersection,

DX5DL2,1
s,X ùDL2,1

u,X ,

contains all the orbits that have come from the Jupiter reg
J into the exterior regionX, have gone around the Sun on
~in the rotating frame!, and will return to the Jupiter region
Notice thatDX has two components, one at the 2:3 resona
region and the other at the 1:2 resonance region.

In the heliocentric inertial frame, these orbits are nea
elliptical outside a neighborhood ofL2 . They have a semi-
major axis which corresponds to either 2:3 or 1:2 resona
by Kepler’s law. Therefore, any Jupiter comet which has
energy similar toOterma’s and which circles around the Su
once in the exterior region must be in either 2:3 or 1:2 re
nance with Jupiter.

Note that the pointPX , which is on the boundary ofDX

at the 2:3 resonance region, is a symmetric~1,1!-homoclinic
n
,

n

e

y

e
n

-

point that we have used to construct the symmetric~1,1!-
homoclinic orbit of the exterior region in Fig. 2~Plate 1!.
This also explains why we have marked it as a homocli
orbit which corresponds to the 2:3 resonance.

The background points in Fig. 40 were generated b
technique similar to those in Fig. 39. They reveal a simi
mixed phase space, but now the resonances are exterior
nances~exterior to the orbit of Jupiter!.

A portion of DX is connected to interior resonance
through a heteroclinic intersection in the Jupiter region.
particular, a subset of the 2:3 intersection region ofDX con-
nects to the 3:2 intersection region ofDS via a heteroclinic
intersection in the Jupiter region. We have plotted this sub
as the small strip insideDX. Note that this strip is the pre
image of the strip inDS of Fig. 39. This is the resonanc
transition dynamical channel shadowed by the Jupiter co
Otermaduring its recent resonance transition.

C. Resonance transitions

We have made reference to a heteroclinic intersec
connecting the interiorDS and exteriorDX resonance inter-
section regions. In Fig. 41, we show the image ofDX ~the 2:3
resonance portion! and the pre-image ofDS in theJ region.
Their intersectionDJ contains all the orbits whose itinerarie
have the central block (J,X;J,S,J), corresponding to at leas
one transition between the exterior 2:3 resonance and inte
3:2 resonance. The orbitO8 of Fig. 37 is such an orbit pass
ing through the regionJ.
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FIG. 41. ~Color online! The Jupiter regionU3 Poincare´ section showing the image ofDX ~the 2:3 resonance portion! and the pre-image ofDS ~the 3:2
resonance!. Notice their intersections, the largest of which is labeled (J,X;J,S,J), corresponding to the itinerary of this group of orbits.
rio

th

a

n

a
al

on

e

e

in

o
ed
c.
re

c
s

ody
is
ion

its
ami-
een
rt
m,
with

ing
so-
te-
r
b-

that
See

ted
arth

sys-
ady

un-
be
de-

vi-
Note the pointPJ , which lies in the intersection of the
boundaries of the image ofDX ~the 2:3 resonance portion!
and the pre-image ofDS. This point PJ corresponds to a
heteroclinic connection between the exterior 2:3 and inte
3:2 resonances. In a neighborhood ofPJ , the dynamical
channel connects the 3:2 interior resonance region with
2:3 exterior resonance region. The periodic orbitO referred
to earlier, which goes from 3:2 to 2:3 and back again
infinitum, lies in this neighborhood.

The orbit of cometOterma~from 1910 to 1980! also lies
in the neighborhood ofPJ , in the region with itinerary
(X,J,S,J,X), as determined from Sec. IV E.Oterma does
not perform the ‘‘exact’’ exterior to interior homoclinic–
heteroclinic resonance transition defined by the seque
(J,X,J,S,J), but as a nearby trajectory~and ‘‘nearby’’ itin-
erary!, it exhibits a similar transient behavior. We note th
Otermaexhibits only one transition during the time interv
~a few hundred years, centered on the present! for which
there is reliable orbit data. It begins in the exterior regi
close to the 2:3 resonance~i.e., a23/2'2/3), is perturbed by
Jupiter into an exactly homoclinic 3:2 resonance~3 revolu-
tions around the Sun in 2 Jupiter periods!, and is then nearly
symmetrically perturbed into the exterior region, slightly b
yond the 2:3 resonance. See Fig. 32.

It is reasonable to conclude that, within the full thre
dimensional model,Oterma’s orbit lies within an analogous
region of phase space which carries the label (X,J,S,J,X). It
is therefore within theL1 and L2 manifold tubes, whose
complex global dynamics lead to intermittent behavior,
cluding resonance transition.

More study is needed for a thorough understanding
the resonance transition phenomenon. The tools develop
this paper~dynamical channels, symbolic dynamics, et!
should lay a firm theoretical foundation for any such futu
studies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have applied dynamical systems te
niques to the problem of heteroclinic connections and re
r

e

d

ce

t

-

-

-

f
in

h-
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nance transitions in the planar circular restricted three-b
problem~PCR3BP!. One of the main results in this paper
the semi-analytical discovery of a heteroclinic connect
betweenL1 and L2 periodic ~Lyapunov! orbits having the
same energy~Jacobi constant!. This augments the known
homoclinic orbits associated to theL1 andL2 Lyapunov or-
bits which were proven to exist by McGehee9 and LMS.5 By
linking these heteroclinic connections with homoclinic orb
on the same Jacobi constant surface, we have found dyn
cal channels that provide a fast transport mechanism betw
the interior and exterior Hill’s regions. This rapid transpo
mechanism, which occurs with only two degrees of freedo
is a dynamical systems phenomenon not to be confused
Arnold diffusion.

The channels provide a starting point for understand
the transport mechanisms connecting mean motion re
nances, and in particular, those mechanisms which link in
rior and exterior resonances~e.g., the 3:2 and 2:3 Jupite
resonances! via the Jupiter capture region. By comparing o
servations of the orbits of Jupiter comets likeOtermawith
the dynamical channels discovered herein, we conclude
the comets are guided by these dynamical channels.
Figs. 2 and 32.

Moreover, these dynamical channels could be exploi
by spacecraft to explore a large region of space near E
~and the near Earth’s orbit! using low-fuel controls. In fact,
the channels can be utilized around any planet or moon
tem. Behavior related to the dynamical channels has alre
been observed by Lo, Williamset al.6 in the trajectory for
the Genesis Discovery Mission, which exhibits near-
heteroclinic motion betweenL1 and L2 in the Sun–Earth
system. See Fig. 42. With a better understanding of the
derlying homoclinic–heteroclinic structures we should
able to construct and control spacecraft trajectories with
sired exotic characteristics~e.g., transfer betweenL1 andL2

orbits, explore interior region, and then return to Earth’s
cinity!.
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FIG. 42. ~Color online! ~a! A homoclinic-heteroclinic chain on theGenesis Discovery Missiontrajectory’s energy surface.~b! Close-up of the chain in Earth’s
vicinity. The actualGenesis Discovery Missiontrajectory is shown in black overlaying the chain, and in particular, the heteroclinic connection fromL1 to L2 .
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Greater space mission flexibility could be achieved po
launch owing to the sensitivity of the phase space in th
dynamical channels. Miniscule fuel expenditures could le
to dramatically different spacecraft trajectories. One co
turn a near-Earth mission into an asteroid rendezvous
return missionin situ with an appropriately placed sma
thrust. Rather than being a hindrance to orbital stability, s
sitivity facilitates mission versatility.

1. Extension to three dimensions

The natural extension of our work is to apply the sa
methodology to the three-dimensional CR3BP. We will se
homoclinic and heteroclinic orbits associated with thre
dimensional periodic ‘‘halo’’ and quasi-periodic ‘‘quas
halo’’ and Lissajous orbits aboutL1 and L2 . Their union
would be three-dimensional homoclinic–heteroclinic cha
around which the symbolic dynamics could be used to tr
a variety of exotic orbits.

The three-dimensional chains would provide an init
template for the construction of actual spacecraft trajector
By presenting a more complete portrait of the phase sp
geometry nearL1 and L2 , the three-dimensional channe
will be of enormous benefit in the design and control
constellations of spacecraft in these regions. T
homoclinic–heteroclinic structures suggest natural low-f
paths for deployment of constellation spacecraft to and fr
Earth. They will aid in the design of control schemes nec
sary for space missions such as NASA’s Terrestrial Pla
Finder~TPF! which must maintain precise coordinated poin
ing and relative separation of the formation flying spacecr

The three-dimensional dynamical channels may a
provide a more complete understanding of phase space t
port mechanisms. In particular, they may elucidate the re
nance transition process for Jupiter comets which have la
excursions out of Jupiter’s orbital plane.

2. Coupling of two three-body systems

To obtain a better grasp of the dynamics govern
transport between adjacent planets~or moons!, we could ap-
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ply our methodology to the coupled PCR3BP. The coup
PCR3BP considers two nested co-planar three-body syst
such as for two adjacent giant planets competing for con
of the same comet~e.g., Sun–Jupiter-comet and Sun–Satu
comet!. When close to the orbit of one of the planets, t
comet’s motion is dominated by the corresponding plane
three-body dynamics. Between the two planets, the com
motion is mostly heliocentric, but is precariously poised b
tween two competing three-body dynamics. In this regi
heteroclinic orbits connecting Lyapunov orbits of the tw
different three-body systems may exist, leading to com
cated transfer dynamics between the two adjacent plan
See Fig. 3~Plate 2!.

This transfer dynamics, which may be realized in act
comet behavior, could be exploited for free transfers
spacecraft between adjacent moons in the Jovian and S
nian systems~Lo and Ross19!. For instance, one could con
duct a ‘‘Petit Grand Tour’’ of the Jovian moon system, a
example of which is shown in Fig. 3~Plate 2!. By system-
atically seeking heteroclinic connections between librat
point orbits of adjacent moons, one could design trajecto
which transfer from the vicinity of one moon to another u
ing fuel-minimizing controlled thrusts.

We have used these same techniques to gain a de
understanding of low-cost trajectories from the Earth to
moon, motivated by the work of Belbruno and Miller.30

3. Merging optimal control and stabilization with
dynamical systems theory

The construction of exotic spacecraft orbits usi
homoclinic–heteroclinic dynamical channels requires op
mal thruster controls to navigate these dynamically sensi
regions of phase space. Using optimal, fuel minimizing i
pulsive and continuous thrust, is the most efficient and na
ral way to take advantage of the delicate dynamics.

Lawden20 developed Primer Vector Theory, the first su
cessful application of optimal control theory to minimiz
fuel consumption for trajectories with impulsive thrusts
the two-body problem. The extension of Primer Vect
Theory to continuous low-thrust control for the restrict
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three-body problem is a current area of active research.
work on this problem indicates that developing optimal co
trol theory within the dynamical systems framework sho
promise for producing a numerical solution in the three-bo
context~see also Refs. 32 and 33!.

In our ongoing effort to use the methods of optimal co
trols to study the orbit transfer problem for certain JPL sp
missions, we are exploring the ‘‘direct’’ method for solvin
the optimal control problem. In the direct method, the op
mal control problem can be first approximated by a discr
optimization problem using a collocation or multiple shoo
ing discretization scheme. Then the resulting optimizat
problem is solved numerically with a sophisticated sequ
tial quadratic programming~SQP! technique. While the nu-
merical algorithm of the direct method is quite robust f
certain types of two-body problems, we do not expect t
the application to the three-body regime will be complet
straightforward. It would also be interesting to explore t
ways in which optimal control in the presence of mechan
~as in, for example, Koon and Marsden21! is useful in this
problem.

As usual, for any numerical algorithm, a good initi
guess is vital, especially if the problem is very sensitive n
merically. Dynamical systems theory can provide geome
cal insight into the structure of the problem and even go
approximate solutions. For example, in finding low-thru
optimal transfers toL1 halo orbits in the Sun–Earth system
it is important to know that the invariant manifolds of th
halo orbits extend to the vicinity of the Earth and any traje
tory on these manifolds can be used as a super-highway
free rides to and from the halo orbits. See Fig. 43.

Clearly, this theoretical insight and its derivative nume
cal tools can aid in the construction of superior init
guesses that lead to a convergent solution.

A deeper understanding of the dynamical structure of
restricted three-body problem, including the ideas we h
contributed in this paper, may suggest alternative formu
tions of the optimizing scheme which are based more on
geometry of the phase space. Instead of ‘‘numerically gr
ing in the dark,’’ algorithms could be developed with th

FIG. 43. ~Color online! A transfer trajectory from low Earth orbit to anL1

halo orbit. This trajectory was constructed using the stable manifold of
halo orbit. The arrows attached to the halo orbit point in the direction of
stable manifold.
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natural dynamics built in, thereby yielding better conve
gence properties.

In addition to the optimal control problem of getting to
halo orbit, there are well known techniques for stabilizi
the dynamics once one gets there. Some of these techni
are related to the general theory of stabilizing dynamics n
saddle points and homoclinic or heteroclinic orbits, as
Bloch and Marsden.22 In addition, it would be of interest to
explore the use of other stabilization techniques that m
use of the mechanical structure for problems of this sort
in Bloch, Leonard, and Marsden.23 See also Refs. 22, 31, an
40.

4. Symplectic integrators

The use of symplectic integrators for the long time in
grations of the solar system is well known through the wo
of Tremaine, Wisdom, and others. In many problems
which the dynamics is delicate or where there are delic
controls, care is needed with integration algorithms. The a
of integration algorithms for mechanical systems continu
to develop and be implemented; see, for example, Wendla
and Marsden,24 Kane, Marsden, and Ortiz,25 and Kane,
Marsden, Ortiz, and West26 and also Refs. 36, 40, and refe
ences therein. These techniques are very effective for b
conservative mechanical systems as well as systems
forcing, such as controlled systems. It would be of interes
explore these numerical methods in the context of space
sion design and other orbital mechanics problems.

5. Pattern evocation

The resonant structures that one sees in the rota
frames of interest in the present paper appear similar to w
one sees in the phenomenon ofpattern evocation~see Mars-
den and Scheurle,27 Marsden, Scheurle and Wendlandt28!
when rotationally symmetric systems are viewed from
point of view of an appropriate rotating frame. Of course,
the restricted three-body problem there is a simple and n
ral choice of a rotating frame. However, for the full thre
body problem or other situations, the general theory still s
gests that appropriate rotating frames can be found relativ
which simple resonant phenomena would be evoked
would be of interest to explore this link further.

6. Four- or more body problems

While the planar CR3BP model provides an adequ
explanation for a class of Jupiter comets whose Jacobi c
stant is close to~and less than! C2 and whose motion is close
to the plane of Jupiter’s orbit, it fails to explain resonan
transition phenomena for high inclination Jupiter comets a
comets not dominated solely by Jupiter. For this second c
of comets, other effects such as out-of-plane motion and
turbation by other giant planets, most notably Saturn,
quite strong and need to be considered. Though the Ju
comets exhibit their transitions on relatively short tim
scales~tens to hundreds of years!, rare terrestrial planet en
counters~with Earth and Mars! also need to be considered
In short, the study of this second class of comets require
complete storehouse of tools needed in the study of the n

e
e
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FIG. 44. ~Color online! ~a! Dynamical channels in the solar system. We plot the~local! semi-major axis versus the orbital eccentricity. We show theL1 ~gray!
andL2 ~black! manifolds for each of the giant outer planets. Notice the intersections between manifolds of adjacent planets, which leads to chaotic
Also shown are the asteroids~dots!, comets~circles!, and Kuiper Belt objects~lighter circles!. ~b! The zodiacal dust ring around the Earth’s orbit, as mode
by Earth’sL1 andL2 stable and unstable manifolds. We show the Sun–Earth rotating frame. Notice the ‘‘clumps’’ in the Earth’s orbit.
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Earth asteroids, regarded by many as the most challen
topic in celestial mechanics.

While the restricted circular problems, in the plane a
space are already difficult, the extension of dynamical s
tems ideas to the unrestricted problem and the four b
problem remains a challenge. See, for example, Ref. 37

However, since the mean motion resonances~mostly
with Jupiter! and their associated transport mechanisms
play the dominant role in solar system material transport,
paper can be seen as laying a firm foundation for any fu
studies in this direction. We may need to consider other m
complicated models like the full three-dimensional CR3
and the coupled PCR3BP as mentioned above. As Lo
Ross4 suggested, further exploration of the phase space st
ture as revealed by the homoclinic–heteroclinic structu
and their association with mean motion resonances may
vide deeper conceptual insight into the evolution and str
ture of the asteroid belt~interior to Jupiter! and the Kuiper
belt ~exterior to Neptune!, plus the transport between the
two belts and the terrestrial planet region. See Fig. 44~a!.

Potential Earth-impacting asteroids may utilize the d
namical channels as a pathway to Earth from nearby, se
ingly harmless heliocentric orbits which are in resonan
with the Earth. The same dynamics which allows us to c
struct libration point space missions such as theGenesis Dis-
covery Mission, which is on a natural Earth collision orbit, i
also the dynamics that could bring unexpected Earth imp
tors. This phenomena has been observed recently in the
pact of cometShoemaker-Levy 9with Jupiter, which was in
2:3 resonance with Jupiter~one of the resonances dynam
cally connected to the Jupiter region! just before impact.

7. Zodiacal dust cloud

Numerical simulations of the orbital evolution of aste
oidal dust particles show that the Earth is embedded i
circumsolar ring of asteroidal dust known as the zodia
dust cloud~Dermottet al.29!. Both simulations and observa
tions reveal that the zodiacal dust cloud has structure. W
ng
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viewed in the Sun–Earth rotating frame, there are sev
high density clumps (;10% greater than the backgroun!
which are mostly evenly distributed throughout the Eart
orbit. The simulations of Dermottet al.29 considered the
gravitational effects of the actual solar system and nongr
tational forces: radiation pressure, Poynting–Robertson l
drag, and solar wind drag. The dust particles are believe
spiral in towards the Sun from the asteroid belt, becom
trapped temporarily in exterior mean motion resonances w
the Earth. They are then scattered by close encounters
the Earth leading to further spiraling towards, and event
collision with, the Sun.

We suspect that the gross morphology of the ring
given by a simpler CR3BP model involving the homoclin
and heteroclinic structures~the dynamical channels! associ-
ated withL1 andL2 ~Lo and Ross4!. See Fig. 44~b!.

The drag forces do not destroy the dynamical chan
structure, but instead seem to lead to convergence onto
structure for particles spiraling in from the inner astero
belt. Once trapped in a channel, the dynamics naturally l
to transport~via an Earth encounter! into the interior region,
where drag forces dominate once more.

As with the Earth, the structure of any extrasolar terr
trial planet’s zodiacal dust ring is probably dominated by t
three-body dynamics. As the particular features of the r
structure~i.e., width of ring, number of high density clumps!
are characteristic of the particular mass ratio of the plane
the star, one could use the structure observed in an extra
zodiacal dust ring to determine the mass of the planet,
suming the mass of the star could be determined using s
troscopic methods. The Terrestrial Planet Finder miss
could use such a scheme to detect terrestrial planets em
ded in the zodiacal dust rings of nearby stars.

8. A new paradigm for a new millennium

A century has passed since Poincare´ introduced dynami-
cal systems theory to study the restricted three-body pr
lem. Yet this system still enchants us with its rich structu
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and dazzling spectrum of behaviors despite its deceptiv
simple formulation. With the fundamental dynamical sy
tems tools developed herein, we stand poised to appre
and utilize this rich structure in ways Poincare´ could only
imagine.
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PLATE 1

FIG. 1. ~Color! ~a! Stable~dashed curves! and unstable~solid curves! manifolds ofL1 andL2 projected to position space in the Sun–Jupiter rotating fram
TheL1 manifolds are green, while theL2 manifolds are black.~b! The orbit of cometOterma~AD 1915–1980! in the Sun–Jupiter barycentered rotating fram
~red! follows closely the invariant manifolds ofL1 andL2 . Distances are in Astronomical Units~AU!.

FIG. 2. ~Color! A dynamical channel~homoclinic–heteroclinic chain! corresponding to the Jupiter cometOterma. The periodic orbits aboutL1 andL2 are
black. Their homoclinic orbits are blue and green. The heteroclinic connection between them is magenta. The actual orbit ofOterma~AD 1910–1980! is
shown in red overlaying the chain. Distances are in Astronomical Units~AU!.
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FIG. 3. ~Color! The ‘‘Petit Grand Tour’’ space mission concept for the Jovian moons. In our example, we show an orbit coming into the Jupiter sys
~a! performing one loop around Ganymede~shown in the Jupiter–Ganymede rotating frame!, ~b! transferring from Ganymede to Europa using a sing
impulsive maneuver~shown in the Jupiter-centered inertial frame!, and~c! getting captured by Europa~shown in the Jupiter-Europa rotating frame!.

FIG. 5. ~Color! ~a! Hill’s region ~schematic, the region in white!, which contains a ‘‘neck’’ aboutL1 andL2 . ~b! The flow in the region nearL2 , showing
a periodic orbit~black ellipse!, a typical asymptotic orbit~green!, two transit orbits~red!, and two nontransit orbits~blue!. A similar figure holds for the region
aroundL1 .
PLATE 2
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FIG. 6. ~Color! The projection onto the~h,j!-plane of orbits near the equilibrium point~note, axes tilted 45°). Shown are the periodic orbit~black dot at the
center!, the asymptotic orbits~green!, two transit orbits~red!, and two non-transit orbits~blue!.

FIG. 7. ~Color! ~a! The cross-section of the flow in theR region of the energy surface.~b! The McGehee representation of the flow in the regionR.
PLATE 3



465Chaos, Vol. 10, No. 2, 2000 Heteroclinic connections in celestial mechanics
FIG. 8. ~Color! Spiraling of the images of arcsg i .

FIG. 9. ~Color! The flow in the equilibrium regionR of position space. Shown are the periodic orbit~black ellipse!, a typical asymptotic orbit~green!, two
transit orbits~red!, and two nontransit orbits~blue!.
PLATE 4
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FIG. 19. ~Color! ~a! A group of four transverse~1,1!-homoclinic points.~b! The symmetric~1,1!-homoclinic orbit corresponding to the leftẋ50 ~1,1!-
homoclinic point@the large black dot in~a!#.

FIG. 21. ~Color! ~a! The first three Poincare´ cuts of the unstable (WL1 ,p.o.
u,S ) and stable (WL1 ,p.o.

s,S ) manifolds with the planey50. ~b! A nonsymmetric
~1,3!-homoclinic orbit in the interior region@corresponding to the large dot in~a!#.
PLATE 5
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FIG. 22. ~Color! ~a! The projection of invariant manifoldsWL1 ,p.o.
u,J andWL2 ,p.o.

s,J in the regionJ of the position space.~b! The first two Poincare´ cuts of the

invariant manifolds with the planex512m.

FIG. 24. ~Color! The construction of a suitable Poincare´ map.
PLATE 6
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FIG. 25. ~Color! The strips near the asymptotic sets on the spheresn1,1, n1,2, n2,1, n2,2.

FIG. 26. ~Color! The families of horizontal strips~blue! and their images~orange! underP.

FIG. 27. ~Color! The domainU5U1øU2øU3øU4 of the Poincare´ mapP.
PLATE 7
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FIG. 29. ~Color! The topological squares and the images of some rectangles. We show schematically only two strips although there is an infinite

FIG. 31. ~Color! The invariant setL of the Poincare´ mapP.
PLATE 8


