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• We study the atmospheric Lagrangian coherent structures (LCSs).
• We study the effects of errors of forecast velocity on the finite time Lyapunov exponent (FTLE) field and associated LCSs.
• We propose five methods for comparing forecast- and archive-based FTLE–LCSs.
• We quantify the accuracy of predictions of LCSs.
• We quantify the sensitivity of such predictions with respect to the involved forecasting parameters.
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a b s t r a c t

The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport
and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest
that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for
more efficient models and management strategies for the spread of infectious diseases affecting plants,
domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs
may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles
and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting
errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the
cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent
(FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting
parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE–LCS features and
(b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts
of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This
result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also
show under what circumstances one can trust the forecast results if one merely wants to know if an LCS
passed over a region and does not need to precisely know the passage time.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The emergence of Lagrangian coherent structures (LCSs) along
with related concepts from dynamical systems theory during the
past decade has aided in providing a better understanding of
the geometric mechanisms of transport and mixing of particles
in moving fluids [1–7]. Hyperbolic LCSs are material surfaces
with maximum attraction or repulsion rates in non-autonomous
dynamical systems as viewed in the context of extended phase
space [8] and can be considered analog to invariant stable and
unstable codimension one manifolds.
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One of the novel applications of this new concept is in
the study of long range transport of airborne microorganisms
passively advected by atmospheric flow [9–11]. The diseases borne
by microorganisms can have severe economical and ecological
effects. For example, Hurricane Ivan brought soybean rust from
South America to the Gulf coast of the US [12,13], and long
distance transport is believed to play a role in the dispersal of
tobacco blue mold in the US [14]. Experimental verification of
long distance transport of airborne microorganisms from known
sources is underway [15]. Given the biological and economical
importance of invasive plant diseases, there is an increasing
interest in predicting the distribution patterns of pathogens.
This will be beneficial for better informing national and local
managements. For example, the USDA Pest Information Platform
for Extension and Education is an extensive program which
provides the latest information on soybean rust and soybean
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aphid including observations,management recommendations, and
scouting information (http://sbr.ipmpipe.org).

It has been hypothesized that LCSs may play an important
role in the long distance and non-uniform spread of microbes [9].
This assumption is built on the essential properties of the re-
pelling and attracting LCSs which act as the backbone of mix-
ing, providing moving partitions of the fluid domain into regions
whichmove coherently [16,3]. This hypothesis has been tested us-
ing autonomous unmanned aerial vehicles (UAVs) equipped with
microbe-sampling devices to collect viable spores of a specific
group of fungi known as Fusarium [10]. This group of fungi contains
a number of important plant and animal pathogens [17]. Collec-
tions were performed during daylight hours at random times over
a fixed geographic location. Counts of Fusarium were compared to
hyperbolic LCS features obtained from archived wind velocity data
from the NAM-218model. Statistical results from several sampling
flights show that when a punctuated change in spore concentra-
tion occurs, there is a high probability that an LCS passes over the
sampling location between the two sampling times [9].

Sampling flights are costly experiments in terms of equipment
and personnel and have been performed without any forecast
of LCSs. While this approach avoids certain biases in the data
collection for initial hypothesis testing, a more efficient strategy
would be to choose the sampling times with respect to the
expected passage times of LCSs over the sampling location. Thus,
instead of selecting arbitrary sampling times for UAVs, one can
use wind velocity forecast data to predict LCS features. This would
enable investigators (such as ourselves) to optimize a sampling
strategy to collect samples on either side of a predicted LCS.

Another motivation for using forecast results is for risk
assessment. If the association of LCSs and long-range transport
of agricultural pathogens holds up under further scrutiny, then
predictions of LCSs can be incorporated in management strategies,
i.e., by short-term prediction based on wind data. If the differences
between the predicted and true wind velocity field are small in
the sense of Haller [18], then hyperbolic LCSs will be topologically
stable, and the strategy of using wind forecast data is sound.

In this context, we seek to study the accuracy of forecast LCS
features. In this paper, our results reveal the cumulative effects of
errors ofwind field forecasts on the finite-time Lyapunov exponent
(FTLE) fields and related LCS patterns [19].

We specifically investigate questions such as: How accurate
and precise are forecast FTLE–LCSs? And what are the quantitative
methods for comparing the forecast-based with the archive-based
features? Also, what are the effective parameters on the quality
of FTLE–LCSs forecasting? Answering these questions would be
vital when we want to apply this approach to real situations, for
example, to predict the incursion of a high threat plant pathogen
into susceptible regions from a distant source [20].

The paper is outlined as follows. In Section 2, we discuss the
conceptual and mathematical definitions of the FTLE field, ridges
and hyperbolic repelling and attracting LCSs. In Section 3, we
discuss the time scheduling of real-time extraction of hyperbolic
LCSs from NAM-218 data set. In Section 4, we study the errors
of wind field forecasts as the main cause of imprecise FTLE–LCS
predictions. In Section 5, we propose five methods for quantitative
comparison of forecast-based with archive-based LCSs with
respect to effective parameters (pointwise comparison of the FTLE
field, 2D cross correlation, proper orthogonal decomposition (POD)
method [21–23], composite correlation filter [24] and modified
Hausdorff distancemethod [25]). In Section 6, wemake conclusion
of the comparison methods and the results from each of them.

2. LCS computation and conceptual motivation

In the description below, we follow the notation and terminol-
ogy of [5]. Consider a velocity field of the form
ẋ = v(x, t), x ∈ U ⊂ Rn. (1)

At each instant of time t , a trajectory of the system (1) is defined
by x(t, t0, x0), starting from the initial position x0 at time t0. The
flow map φt

t0(x0) maps the initial position x0 at time t0 into the
position at time t advected under the flow,

φt
t0 : x0 → x(t, t0, x0). (2)

We use the deformation gradient (Jacobian)

Dφt
t0(x0) =

dφt
t0 (x)
dx


x=x0

, (3)

to define the finite-time right Cauchy–Green strain tensor C t
t0(x0)

as

C t
t0(x0) = Dφt

t0(x)
∗Dφt

t0(x)|x=x0 (4)

where the superscript ∗ refers to matrix transpose. From the strain
tensor C t

t0(x0), the largest finite-time Lyapunov exponent (FTLE)
corresponding to the trajectory x(t, t0, x0) over the time interval
[t0, t] is defined as

σ t
t0(x0) =

1
|t − t0|

log
Dφt

t0(x0)


=
1

|t − t0|
log


λmax


C t
t0(x0)


(5)

where ∥·∥ is the norm operator and λ1 < λ2 < · · · < λn−1 <
λn = λmax are the eigenvalues of C t

t0(x0). Since the strain tensor
is positive definite by definition, all the eigenvalues are real and
positive. When t > t0, we refer to σ t

t0(x0) as the forward FTLE and
for t < t0, we refer to it as the backward FTLE.

Shadden et al. [5] and Lekien et al. [4] defined Lagrangian
coherent structures as the ridges of the FTLE field. Later, Haller
and [8] showed that the ridges of the FTLE field are hyperbolic
Lagrangian coherent structures only if they satisfy additional
criteria. Based on Haller [8] and Karrasch [26], for a fixed time
interval [t0, t] a compact hypersurface R(t0) ⊂ U is defined as an
FTLE ridge if for all x0 ∈ R(t0)we have
Dλmax(x0, t0, t), ξmax(x0, t0, t)


= 0

ξmax(x0, t0, t),D
2λmax(x0, t0, t)ξmax(x0, t0, t)


< 0

(6)

where ξmax is the eigenvector corresponding to the largest
eigenvalue of C t

t0(x0), ⟨., .⟩ is the inner product on Rn and D2

represents the Hessian of a scalar field.
Provided that R(t0) is an FTLE ridge (6) at the initial time,

Haller [8] showed that the sufficient and necessary conditions for
R(t) = φt

t0 (R(t0)) to be a hyperbolic repelling LCS during the
interval [t0, t] are

λn−1(x0, t0, t) ≠ λmax(x0, t0, t) > 1
ξmax(x0, t0, t) ⊥ Tx0R(t0)
µ∗L(x0, t0, t)µ > 0

(7)

where Tx0R(t0) is the tangent space of R(t0), L is a matrix defined
in Haller [8], andµ is any non-zero column vector of real numbers
(the positive definite condition for L). Note that there is no
guarantee that all the existing hyperbolic features are identified
by this approach.

Later, Karrasch [26] showed that if eigenvectors of C t
t0(x0)

are differentiable (which is naturally observed in smooth enough
velocity fields) then (7) simplifies to

λn−1(x0, t0, t) ≠ λmax(x0, t0, t) > 1
ξmax(x0, t0, t) ⊥ Tx0R(t0).

(8)
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We use the sets of Eqs. (6) and (8) to extract the actual
hyperbolic LCS features from the list of candidates.

Hyperbolic repelling and attracting LCSs have the very im-
portant characteristic of being locally the strongest repelling or
attracting material surface over time interval [t0, t] [8]. Since they
are material surfaces, they divide the domain of motion of par-
ticles into different regions of qualitatively different motion (or
origin or fate), so we consider the LCSs as atmospheric transport
barriers [27,28,9,10]. Fig. 1 shows the conceptual features of the
repelling and attracting LCSs. In the case of the attracting LCS fea-
ture, the particles inside an initially straddling fluid blob move in
such a way that they are attracted to the LCS in forward time. A re-
pelling LCS feature is the same as an attracting one for an inverse
time direction.

3. Real-time LCSs extraction

In this section we discuss the data and the relevant data
structure we use for numerical calculations of the FTLE–LCSs in the
atmospheric flow of interest. In the first part, we introduce NAM-
218 integrated system as the main data source for our calculations
and the forecast and archive data sets. In the second part, we define
the time schedule and the constraints for real-time FTLE–LCS
forecasting. Finally, the last part describes the structure of velocity
data.

3.1. NAM-218 data set

Computing the FTLE field requires the flow map, (2), φt
t0 :

x0 → x(t, t0, x0). For generating this map we use numerical data
provided by National Oceanic and Atmospheric Administration
(NOAA) and National Centers for Environmental Prediction’s
(NCEP) Operational Model Archive and Distribution System
(NOMADS) project. NOMADS product utilizes observational data
from radar stations, weather balloons and data from satellites as
inputs for its meteorological models. We use one of the outputs of
this nonhydrostatic mesoscale model, which is the North America
Mesoscale, NAM-218, with data given on a grid of 614 × 428
points spaced at about 12.1 km covering North America. This
model contains 70 variables such as temperature, humidity and
components of velocity on 70 levels. Among the 70 levels, 44
correspond to pressure levels (up to 10 mb), while other levels
mostly refer to various heights above the ground level. NAM-218
data are given on a plane given by Lambert conformal projection,
which projects the points given by their latitude and longitude
(φ, λ) on the sphere to a Cartesian coordinate [29]. We consider a
6230×4670 km rectangular area as our wind velocity field andwe
compute the LCSs over an interrogation zone of 1000 × 1000 km
size with 256 × 256 grid points. We consider the sampling area
(Virginia Tech’s Kentland Farm near Blacksburg, VA) as the center
of that square (37°11′ N latitude and 80°35′ W longitude), which
is approximately 16 km southwest of the Virginia Tech campus in
Blacksburg, Virginia.

Essentially two types of data are used in our FTLE–LCSs
calculations: archive data and forecast data. The recorded state of
the atmospheric system is called archive data. To generate this data
set, numerousmeasurements from, e.g., weather stations, weather
balloons, satellites and any available atmospheric observations,
are assimilated and used to drive large-scale oceanic–atmospheric
geophysical fluid models. Outputs of this process over the domain
of interest, e.g., North America, might be different from measured
values at specific measurement points, but they satisfy objective
functions of the data assimilation–simulation process. By forecast
data, we mean the output of geophysical models which use the
most current outputs of the data assimilation process (archive
data) as an input to estimate the state of the system for (near-)
future times [30]. In NAM-218 data set, the temporal resolution of
archived data is 6 h corresponding to 00:00, 06:00, 12:00 and 18:00
UTC of each day. Accordingly, the forecast chain can start based on
each of these archive slices. Temporal resolution for forecast data
is 3 h and at each moment, the maximum available forecast data is
for 84 h lead time.

3.2. Time scheduling for real-time FTLE–LCSs calculations

As mentioned in the Introduction, we want to use forecast
data to predict the LCS features. Based on the availability of wind
velocity forecast data andprocessing time,wehave a time schedule
for each day. Fig. 2 illustrates the details of such a schedule for
a typical day. For our sampling purposes, LCSs are desired in
the time interval 08:00–17:00 local time (Eastern Daylight Time
(EDT)), equivalent to 12:00–21:00 UTC, the daylight hours during
which UAV flights are permitted. We call this time interval the
interrogation window I = [t1, t2] ⊂ R. All the results presented in
this paper are related to this time interval and the selected day is 29
Sep 2010, i.e., t1 = 12 : 00 UTC 29 Sep 2010 and t2 = 21 : 00 UTC
29 Sep 2010. We imagine we want to plan sampling flights during
the interrogation window, but we are making the forecast before
t1 by some number of hours. To perform real-time extraction of
LCSs over the interrogation window, we must use a combination
of forecast and archived wind data. Based on NAM-218 timetable,
archived data are available up to 18:00 UTC of the day before t1. For
times after 18:00 UTC of the day before t1, we must use forecast
data (Fig. 2).

We call the time interval between the last frame of available
archive data and the start of the interrogation window the gap
time, T ∗, e.g., the time interval between 18:00 UTC 28 Sep 2010
and 12:00 UTC 29 Sep 2010 (note that T ∗ > 0 for all real-time
calculations, but in some cases we artificially use negative values;
perfect continuous-time LCSs forecasting; to show its effects on the
quality of LCSs forecasting, e.g., Fig. 9).

Asmentioned previously, this procedure is general and the time
schedule would be similar for other days.

Based on the time schedule, Fig. 2, the parameters that control
the forecasting procedure are gap time, T ∗, and integration time,
T = t − t0, following the notation of Section 2 for t0 and t , where
t0 ∈ I. We are interested in studying the effects of the parameters
(T ∗, T ) on LCS forecasting.

We set the maximum integration time T to be 48 h, since
our results in Section 4 suggest that for larger integration time,
patterns of forecast FTLE–LCS are significantly different from the
true answers obtained from archived data. Intuitively and from the
chaotic dynamics of atmospheric systems [31,32] we know that by
increasing the portion of trajectory integration which depends on
the forecast wind velocity field, the forecast particle trajectories,
and hence Lagrangian structures, will diverge from true ones. The
important result of this paper is the observation of divergence
of Lagrangian features based on short forecast lead time (i.e., T ∗

small) when errors of the Eulerian forecast field are expected to be
small.

The main contribution of this paper is to quantify (a) the
accuracy of prediction of LCSs and (b) the sensitivity of such
predictions with respect to the parameters (T , T ∗).

3.3. Velocity (wind) field data structure

Based on the previous work [33–37,9], we chose flow data on
a 900 mb pressure surface which also lies within the range of our
prescribed UAV sampling height of 100–400 m above the ground
level at the elevation of Kentland Farm near Blacksburg, VA (farm
ground level is approximately 540 m above the sea level [38]). We
make an isobaric approximation, considering only the components
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Fig. 1. Schematic drawing of hyperbolic attracting and repelling LCSs.
Fig. 2. Schematic time schedule for calculation of real-time and archive-based FTLE–LCSs with respect to NAM-218 timetable. Archive -based features are calculated from
pure archive data. Real-time FTLE–LCSs are calculated based on a combination of forecast and archive data. Interrogation window (12:00 to 21:00 UTC) is the time interval
that UAV flights are permitted. For optimal sampling we have to know the LCS features during this interval. Gap time (T ∗) is the time between the last frame of available
archive data and the start of the interrogation window. FTLE–LCSs are calculated every 15 min in interrogation window in forward and backward directions.
of velocity parallel to the pressure surface, since the vertical ve-
locity is about three orders of magnitude less than the horizontal
components for the range of elevation of interest, and averaged
over the mesoscale. Considering pressure as the vertical coordi-
nate, the mesoscale averaged rate of change of pressure levels is
about 0.03 Pa/s. Thus, during Tmax = 48 h, pressure may change
by as much as 1p ∼ ±52 mb. Under this stratification assump-
tion, we would expect FTLE fields separated by ∆p to be similar
over integration times T = ±Tmax [39]. To illustrate the similarity
of neighboring pressure levels, in Fig. 3the backward FTLE field for
900 and 850 mb levels are given at the time t = 12 : 00 UTC 29
Sep 2010 and (T , T ∗) = (−Tmax, 18 h).

In addition, we can consider this study as a diagnostic approach
for approximately 2D flows to show the effects of cumulative errors
of the Eulerian velocity field on the resultant FTLE–LCS features.

4. Forecast- and archive-based FTLE–LCSs

The main interest in prediction of FTLE–LCSs is based on the
results, e.g., [9] suggesting that there exists a relationship between
passing atmospheric LCSs on the mesoscale and locally detected
changes in airborne microbial concentrations. If the population
structure of airborne microorganisms is determined by large-scale
atmospheric features which the LCSs represent, then the ability to
accurately predict atmospheric LCSs is of interest for prediction in
microorganism dispersal.

To represent the time-dependent FTLE–LCSs (both forecast and
archive based) over the 9 h interrogation window I, we use
snapshots of these features every 15 min, so during 9 h, the total
number of FTLE–LCS snapshots is 37.

The upper panels of Fig. 4 show two snapshots of the attracting
LCS features from forecast (left) and archived (right) data over the
specified zone at the beginning of the interrogationwindow (12:00
UTC). In this case (T , T ∗) = (−24 h, 18 h) and conditions (6) and
(8) are considered for extracting the hyperbolic LCSs. In this figure
we see very similar patterns; however, the features are not exactly
the same aswe expected due to the errors in thewind forecast data.

The lower panels of Fig. 4 show snapshots of the forecast-
(left) and archive-based (right) LCSs at 21:00 UTC with the same
calculation parameters as the upper panels.

One observes that the quality of forecasting decreases for
further lead time, i.e., the LCS patterns from archive and forecast
data become further apart by some metric from the beginning
of the interrogation window, t1, to the end, t2, since 9 additional
hours of forecast contributed to t2 compared to t1. Due to
cumulative effects of wind forecast errors on the trajectories of
particles, the resultant LCS features are less accurate, as we will
attempt to quantify in Section 5 by applying different hybrid
Eulerian–Lagrangian approaches.

4.1. Sources of errors

In this section we discuss some reasons for the disagreement
between forecast- and archive-based LCS features at the level of
Eulerian velocity fields.

Spatiotemporal finite resolution of input data is an important
reason. Asmentioned previously, the temporal resolution provided



A.E. BozorgMagham et al. / Physica D 258 (2013) 47–60 51
Fig. 3. Eastern US with the state of Virginia and Kentland farm (sampling location) in the center. Backward FTLE field for (a) 850 mb and (b) 900 mb pressure levels at time
12:00 UTC 29 Sep 2010 with (T , T ∗) = (−48 h, 18 h), vertical color bar indicates FTLE magnitude (h−1). Note the similarity. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Eastern US with the state of Virginia and Kentland farm (sampling location) in the center (red point). (a, c) forecast- and (b, d) archive-based hyperbolic attracting
LCSs. Upper panels: 12:00 UTC; lower panels: 21:00 UTC 29 Sep 2010. (T , T ∗) = (−24 h, 18 h). In this case, LCSs displacements are SE to NWwith different velocities. Some
branches diminish during interrogation window such as the upper branch of the forecast results (panel (a)) and some remains strong, e.g., the lower branch (panels (a) and
(c)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
by the NAM model is 6 h (considering short-term forecast,
temporal resolution would be 3 h) and the best spatial resolution
is about 12.1 km over North America (we say best as these
spacings are non-uniform). For numerical integration of particle
trajectories, spatiotemporal interpolation of the velocity field is
needed. Interpolation leads to some differences between the true
and the calculated particle paths [40,41] which lead to different
FTLE fields. Since we use the same method of interpolation and
numerical integration for both the forecast and archived data (third
order splines/fourth order Runge–Kutta), we do not consider the
differences between forecast- and archive-based particle paths to
be caused by the interpolation and integration methods.

We are led to conclude that the errors of the forecast fields are
due to the inherent chaotic behavior of the atmospheric system.
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Fig. 5. Error of forecasting (km/h) over North America, (a, d) 12:00 UTC 29 Sep 2010, (b, e) 21:00 UTC 29 Sep 2010, and (c, f) 12:00 UTC 30 Sep 2010. Upper panels: u
component, lower panels: v component. Regions with persistence large error are responsible for deviations of forecast LCSs from true archive-based results.
Recalling Fig. 4, when we desire FTLE–LCS features for further lead
time, we get less accurate results. This fact is the outcome of limits
of predictability of chaotic motion of particles in atmospheric
flow [31,32]. In this paper, the goal is not to study the limits of
forecasting in the presence of deterministic or stochastic chaos,
but merely to quantify the effects of existing forecast errors on the
calculated FTLE–LCSs.

4.2. Quantitative comparison of forecast and archived velocity (wind)
fields

To understand the error distribution of the forecast velocity
field, the essential source of errors in forecasting LCSs, we compare
the wind forecast data with the corresponding archived data sets.

We consider the common scenario of real-time extraction of
LCSs for our purposes, forwhich T ∗

= 18h and the chain of forecast
data starts from 18:00 UTC of the day before the interrogation
window (referring to Fig. 2). At each time slice and for each spatial
grid point, we find the error as the difference between the archive
and the forecast velocity components in the XY plane (u and v are
the components of velocity in X and Y directions, respectively).
Fig. 5 shows the results for three frames related to the interrogation
window, highlighting the persistence and large size of the regions
with large and growing amplitude error.

Calculated LCS features from forecast data should resemble the
true features by amaximumdistance of∆ (Eq. 19 of [18]) if forecast
errors are localized in time. The existence of large and prolonged
high error regions, as shown in Fig. 5, reveals that the errors are
not localized in time and thus could lead to significant differences
between forecast- and archive-based FTLE–LCS results.

To investigate the statistics of the error we find the mean
absolute error (MAE) and mean squared error (MSE) over the
domain of interest (Fig. 6, panels (a) and (b), respectively) [42].
Along with these two standard measures, we apply a method of
nonlinear weighted averaging which yields a normalized scalar
number as a measure of quality of forecasting in a Eulerian sense.
This metric decreases with time. Also, the standard deviation of
errors grows as a function of the forecast lead time, showing the
increasing spread and divergence of forecasting results from the
true state of the system.

For the nonlinear weighted averaging, we normalize the
relative error of velocity forecast with respect to a Gaussian filter,

1

σ
√
2π

exp


− (χ − µ)2

2σ 2


where σ = (2π)−1/2 , µ = 0 and χ represents the corresponding
component of relative error at each point. The output of this
process is a normalized value for each grid point belonging to
(0, 1]. This value is one for a perfect forecast and approaching zero
for an infinite error. We set the quality of forecasting (η) over the
entire domain as the mean value of this normalized relative error
field,

η =
1
N


i,j

exp(−πχ2
i,j) (9)

where N is the total number of grid points.
Fig. 6(c) shows the quality of forecasting (η) decreasing

with time (corresponding to the normalized field). In addition,
Fig. 6(d) shows the standard deviation values related to the spatial
distribution of error (original values) for all forecast time slices
(note that in this example the value of MAE, MSE and standard
deviation is zero before 18:00 UTC 28 Sep 2010 since we use the
archived data for the time interval before it).

The important point of this figure is the general trend of
decreasing forecast quality and increasing MAE, MSE and standard
deviation of error with time. In the next section, we discuss the
effect of these errors on FTLE–LCS features.

5. Results

Referring to the differences between forecast- and archive-
based LCS features, e.g., Fig. 4, a natural question that arises is:
How can one quantify the differences between the forecast- and
archive-based LCSs? Other related questions that emerge are about
the value of the forecast results for scheduling flights to collect
samples before and after the passage time of the forecast LCSs. In
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Fig. 6. Some statistical measures of forecast error over the domain of velocity field: (a) mean absolute error (MAE), (b) mean squared error (MSE), (c) decay of quality of
forecasting and (d) growth of standard deviation with respect to time: u component (solid line), v component (dashed line).
other words, how well do the forecast LCSs describe the real case
of LCSs passages, particularly the passage times? Also, regarding
limitations on availability of necessary data for predicting the
LCSs, what is the best choice for effective parameters such as the
integration and gap times?

We use five methods to compare the forecast and archive LCSs.
We focus on the resultant FTLE–LCSs as the Lagrangian objects
which record the history of the system (since they are calculated
from flow maps, i.e., trajectory of particles). We compare the
37 frames of the FTLE–LCSs corresponding to every 15 min of
the interrogation window (12:00–21:00 UTC). These comparisons
could be regarded as hybrid Lagrangian–Eulerian methods since
they compare snapshots of Lagrangian features. We notice that
for a comprehensive verdict, we need to consider the result of all
thesemethods. None of them alone quantify the similarities and/or
differences.

5.1. Pointwise comparison of FTLE fields

The first and the simplest approach is pointwise comparison of
the values of FTLE fields at a fixed geographical location, e.g., our
sampling site Kentland farm,which is shown in Fig. 7 for the case of
attracting LCSs (backward time integration). If the forecasts were
perfect (i.e., they match the archive-based FTLE–LCSs exactly),
we expect a complete match between two time-series curves.
Although this approach seems to be over-simple, we can employ
a useful rule of thumb for detecting the validity of our forecasts
before doing any additional calculations on archived data to extract
the archive-based LCSs.

Results from several simulations for different days suggest a
rule of thumb which may be beneficial for early warning systems,
e.g., for vast crop fields where the exact passage times of LCSs are
not important, but it is important for one to know if hyperbolic
LCSs pass over a region, since these have been associated with
fluctuations in microbial populations [9]. The rule of thumb is:
if the maximum forecast FTLE value during the interrogation
window is above a certain threshold, then we expect to observe
at least one archive-based LCS in the same time interval. The
Fig. 7. Forecast- (dashed) and archive-based (solid) FTLE value at the sampling
location. T = −24 h and T ∗

= 18 h. Corresponding hyperbolic LCSs are shown
by asterisk and diamonds.

threshold we have determined by observation is 0.07 h−1, i.e.,
if the peak forecast FTLE is >0.07 h−1, then the peak will likely
be preserved (and likely an LCS) in the archive-based calculation.
Further statistical tests would be needed to bear out this rule of
thumb.

Note that Fig. 7 shows that the forecast FTLE–LCS captured one
of the archive peaks (close to 17:00 UTC) but not the other one
which is close to 15:00 UTC. We understand the context of this
mismatch by considering the temporal evolution of the entire FTLE
field. In the forecast, one observes two major ridges at 12:00 UTC
(Fig. 4, panel (a)), the upper ridge has a motion from SE to NW,
but the other ridge does not pass the sampling location and has
a slower motion (Fig. 4, panel (c)), so one peak of the FTLE field is
observed. (Note that after the upper ridge passes over the sampling
location, it becomes less strong and at 21:00 UTC (panel (c)) it
is vanished.) In contrast, for the archive case all ridges move in
the same direction and two major features pass over the sampling
location (Fig. 4, panel (b)), so we record two peaks.
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Fig. 8. (a) Maximum cross correlation coefficient between archive and forecast attracting LCSs at 12:00 UTC 29 Sep 2010, considering 2D shift (±200 km in both X and Y ),
(T , T ∗) = (−36 h, 18 h). (b) Ensemble maximum cross correlation coefficient during 12:00 to 21:00 UTC 29 Sep 2010, T ∗

= 18h, integration time T = −24 h,−36 h and
−48 h.
Fig. 9. Comparing the forecast- and archive-based FTLE–LCSs, studying the effect of (a) T ∗ when T = 24 h and (b) integration time (T ) on the maximum value of cross
correlation coefficient when T ∗

=18 h.
5.2. Cross correlation between forecast- and archive-based LCSs

Cross correlation is a standardmethod of estimating the degree
towhich two scalar fields are correlated [43]. Considering 2D shifts
and discrete data points, we use

r(d1, d2) =


m


n


σm−d1,n−d2 − σ̄

 
ψm,n − ψ̄




m


n


σm−d1,n−d2 − σ̄

2 
ψm,n − ψ̄

2 (10)

to get a 2D surface of cross-correlation coefficients, where σ andψ
represent the value of the FTLE field at each point of forecast and
archive fields and σ̄ and ψ̄ are the spatial average of σ and ψ , and
d1 and d2 represent the shift in the X and Y directions, respectively.

Fig. 8(a) shows the cross correlation coefficient between
forecast and archived attracting LCS features at 12:00 UTC 29 Sep
2010, for (T , T ∗) = (−36 h, 18 h). In this figure, we consider
shifts up to ±200 km in both directions. Using this approach and
by looking for spatial shifts, we focus on the quality of forecast over
the interrogation window. As an example, Fig. 8(b) shows how the
quality of forecast tends to decrease with time (T ∗

= 18 h and
T = −24 h, −36 h and −48 h). This result is typical (recall Fig. 4).

Generally, we can apply this method to compare the forecast-
and archive-based LCSs with respect to different parameters such
as gap time T ∗ and integration time T .
Fig. 9(a) shows the typical effect of T ∗ on the quality of
forecasting for attracting and repelling LCSs. To generate this
figure we fix the integration time to |T | = 24 h and then find
the maximum value of cross correlation coefficient between the
archive-based FTLE field and forecast-based FTLE field, for various
values of T ∗ (‘1st frame’ refers to 12:00 UTC 29 Sep 2010 and
‘last frame’ refers to 21:00 UTC 29 Sep 2010). This figure also
illustrates a general trend; when we decrease the gap time, we
see better agreement between forecast- and archive-based LCSs.
Note that negative values of T ∗ show perfect continuous time LCSs
forecasting.

Considering repelling LCSs (T > 0), one might think that T ∗ has
no effects on the quality of forecasts, since the direction of inte-
gration is positive and we do not need the past (archive) data for
calculating the FTLE field. However, this is not the case as Fig. 9(a)
demonstrates. Note that for smaller T ∗, the forecast is for a smaller
duration, so the quality of wind forecast and the corresponding
LCS features showbetter agreementwith purely archive-based fea-
tures.

Fig. 9(b) shows the effect of integration time T on the agreement
of the archive- and forecast-based FTLE fields. Generally by
increasing the integration time (T ), one sees sharper (and more)
ridges, but based on the quality of the wind forecast, the quality of
the forecast LCSs could get better orworse, i.e., if we have a reliable
wind forecast, we expect cross-correlation coefficients to increase
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when we increase T but if the wind forecast is not reliable, we
anticipate less accurate features. From panel (b) we observe that
by increasing the integration time the quality of attracting LCSs
improves slightly. In contrast, for repelling LCSs the best choice is
to minimize the integration time.

From Figs. 8 and 9 we notice small correlation coefficients
even for the cases where LCS patterns seem to be similar by eye.
This technique is not adequate for practical pattern recognition
since the coefficient degrades rapidly when the patterns (forecast
results) deviate from the references (archive-based results). In
cases where we want to investigate the quantitative correlation
of slightly offset patterns this approach is beneficial. If the overall
qualitative similarity is important, then we have to consider other
approaches such as robust correlation filters (discussed in a later
section) [24].

Moreover, the nature of cross-correlation method forces us to
compare single snapshots of extracted LCSs (i.e., spatial correlation
consideredpointwise in time) and it cannot be applied to thewhole
series of 37 LCS snapshots (i.e., full spatiotemporal variability).
More generally, we expect the forecast-based FTLE field to be both
shifted and deformed compared to the archive-based FTLE field.
For example, for the backward (T < 0) FTLE field, we expect

σ̄
t0+T
t0 (x0) = ζT∗(σ

t0+T
t0 (x0)) (11)

where σ̄ t0+T
t0 (x0) ∈ F (U,R) is the forecast-based FTLE field with

gap time T ∗, σ
t0+T
t0 (x0) ∈ F (U,R) is the archive-based FTLE field,

and ζT∗ : F (U,R) → F (U,R) is a one-parameter family of
diffeomorphisms on the function space F (U,R), with parameter
T ∗, where ζ0 is the identity.

Spatial shifts are only one limited possibility for ζT∗ . In the next
section, we use the POD method to enable us to consider more
general ζT∗ by comparing the archive- and forecast-based FTLE
fields as a series of successive time-slices rather than, at each fixed
time, considering spatial shifts of two-dimensional scalar fields.

5.3. POD analysis

Proper orthogonal decomposition (POD) is a technique to
analyze, e.g., a time-varying scalar field, and can reduce the order
of complex systems [21–23]. We apply this technique to the
time-varying forecast- and archive-based FTLE fields to get the
principal mode shapes as the building blocks of the original high-
dimensional system.We then compare thesemode shapes to study
the effects of different parameters on the quality of forecasting.
This approach yields a wider and deeper view, since the mode
shapes encapsulate the overall data of all the time slices.

Considering the scalar function z(x, t) over some finite domain,
we want to approximate this function as a superposition of spatial
modes with time-varying coefficients, as

z(x, t) ≈

K
i=1

ai(t)Φi(x), (12)

where Φi(x) represents the spatial mode shapes and we expect
as K → ∞, the summation yields the exact value of z(x, t).
Conventionally, theΦ ’s are chosen to be orthonormal, so

x
ΦiΦjdx =


1, if i = j
0, if i ≠ j. (13)

Using Eq. (13), we find the time-varying amplitudes of the mode
shapes as

ai(t) =


x
z(x, t)Φi(x)dx. (14)
Generally, finding theΦ ’s depends on our choice of basis functions
(e.g, Fourier series with orthogonal trigonometric functions). In
the case of the POD method, the Φ ’s are chosen such that the
approximation of (12) for each individual and arbitrary K is the best
approximation in a least squares sense.

Whenwe have z(x, t) as a set of discrete numerical data, we can
use the singular value decomposition (SVD) technique to find the
mode shapes as well as the corresponding coefficients.

ConsideringM to be am×n realmatrix (note that FTLE fields are
always real, so we only consider real matrices), we can decompose
M as

M = UΣV ∗, M ∈ Rm×n (15)

where U is m × m,Σ is m × n diagonal and nonnegative and V ∗

is the transpose of V , and an n × n matrix. Since M is real, all
U,Σ and V would be real, also U and V are unitary matrices. The
diagonal elements ofΣ are called the singular values of the matrix
M and the number of them is equal to the min(m, n), also they are
conventionally placed in descending order. For obtaining themode
shapes, we can rewrite Eq. (15) as

M = QV ∗
=

n
i=1

qiv∗

i (16)

where Q = UΣ and qi is the ith column of Q . We arrange the
numerical data from z(x, t) into a matrix like M; then the ai’s are
equal to the qi’s and the mode shapes are equal to the v∗

i ’s.

5.3.1. Determination of mode shapes
For the 37 snapshots representing our interrogation window,

we get 37 mode shapes from the POD method. Note that we can
regenerate all the snapshots by those 37 mode shapes via (12)
where the required coefficients can be generated by the inner
product of input data M and the related mode shape as described
by (14). Recalling that the importance of themode shapes depends
on the magnitude of their corresponding singular value, Fig. 10
shows the first and the second mode shapes for both the forecast-
and archive-based FTLE field, where (T , T ∗) = (−24 h, 18 h). One
advantage of POD is that one can do the comparison for the most
important mode shapes only, rather than for all of them, since the
contribution of a mode to the original time-varying field depends
on the value of the related singular value.

Fig. 11 shows the cumulative contribution of mode shapes for
typical forecast-based backward and forward FTLE fields and the
associated attracting and repelling LCS features, corresponding to
the interrogation window with (|T |, T ∗) = (24 h, 18 h). From this
figure it is clear that if we want to have up to 90% of the energy of
the system, we have to consider only five mode shapes.

5.3.2. Effect of parameters on the quality of forecasting using POD
modes

In this section, we investigate the contribution of parameters T
and T ∗ on the quality of forecast LCSs. We compare the principal
mode shapes of forecast- and archive-based FTLE fields, using
the cross correlation coefficient, to find the degree of similarity
between them.

Fig. 12 shows the effect of integration time T on the measure
of similarity of mode shapes of backward and forward FTLE fields
when we fix the T ∗ at zero (perfect real-time forecast case) and let
the integration time |T | be 24 or 48 h.

Weobserve that for backward FTLE, increasing T from24 to 48 h
does not change the quality of mode shapes much. We see some
differences for higher mode shapes, but these contribute little to
the FTLE field.

We also observe that the cross-correlation coefficients for the
forward FTLE are always less than the coefficients of the backward
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Fig. 10. First and second mode shapes for the (a, c) forecast- and (b, d) archive-based backward FTLE fields, (T , T ∗) = (−24 h, 18 h).
Fig. 11. Cumulative contribution of themode shapes, backward FTLE (dashed line),
forward FTLE (solid line), (T , T ∗) = (48, 18).

FTLE. Also, for a given forward FTLE mode shape, the similarity
coefficient decreases with increasing T , which is understandable
as the reliance on forecast wind data increases. Note that for the
T ∗

= 0 case, the cross-correlation coefficient for the first backward
FTLE mode shape is close but not exactly one. Recall that mode
shapes encapsulate information from all time snap shots, so as later
snap shots of the forecast wind field diverge from the archive ones,
we expect an increasingly imperfect match between FTLE mode
shapes.

For the next comparison, we choose T ∗ to be 18 h which is
the worst case of real-time forecasting we have considered. Fig. 13
shows the value of cross correlation coefficients for different mode
shapes.

Considering the forward FTLE (repelling LCS features), Figs. 13
and 12 show that when we decrease the integration time, we
generally get better results regarding the correlation coefficients,
i.e., for shorter integration times T , cumulative errors of predicted
trajectories will be smaller. While the results presented are for
the time interval 12:00–21:00 UTC 29 Sep 2010, comparison with
other days and times (not reportedhere) suggests that these results
are typical.

Results of this section are based on correlating the mode
shapes, thus, similar to Section 5.2, we encounter the sensitivity
of the correlation method to deformation of LCSs, leading to
small correlation coefficients for what may seem similar FTLE field
patterns. In Section 5.4we use a type of composite correlation filter
to overcome this weakness.

5.4. Composite correlation filter

We see some weakness of cross correlation techniques in
previous sections, e.g., when two sets of patterns are similar to
our eye but the correlation coefficient is small. In this regard,
robust pattern recognition methods can overcome some of these
limitations and providemeasures of similarity in better agreement
with our visual perception.

In this section we apply synthetic discriminant function (SDF)
filter for correlating whole patterns [24,44]. To design this kind
of filter, we need to have multiple views (training images) of a
single object. If we consider each frame of FTLE–LCS as one object,
thenwe do not have enough training images to construct the filter,
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Fig. 12. Maximumcross correlation coefficient between differentmode shapes, perfect real-time forecasting case; T ∗
= 0, integration time (a) |T | = 24 h and (b) |T | = 48 h.
Fig. 13. Maximum cross correlation coefficient between different mode shapes, real-time forecasting; T ∗
= 18 h, integration time (a) |T | = 24 h and (b) |T | = 48 h.
but if we consider the whole 37 frames as different views of one
time-varying object then we would have enough data to design
the composite correlation filter. By convoluting this filter with all
the forecast FTLE–LCS frames, one can find the overall similarity of
each frame to the whole set of reference frames. In this approach,
the filter is designed such that it generates a pre-specified value in
response to each training image, e.g., 1 for the reference frames.

The governing equation of this filter is

h = X

X∗X

−1 u (17)

where X represents the all training images collected together,

X = [x1, x2, . . . , xn] , (18)

note that each xi represents a training image (1 ≤ i ≤ n) as a
d × 1 vector, where d is the number of data points in each frame
and u = [u1, u2, . . . , un] is an n × 1 vector containing the chosen
peak values for the training frames.

The similarity measure of each forecast FTLE–LCS frame, λi, to
the whole time-varying reference is obtained by

λi = Y∗

i h. (19)

Fig. 14 shows an example of applying this method for attracting
LCSs associated with different T ∗ and Ts. This figure displays the
measure of similarity of each frame (horizontal axis) to the whole
series of archive-based LCSs. One observes that how the overall
similarity decreases as T ∗ increases. Also it is concluded that
similarity measure in this sense is not sensitive to integration time
between −24 and −48 h. Similar results are expected for different
interrogation windows.

In the case of repelling LCSs (not reported), the range of
similarity measure is smaller (∼0.6–0.8) for integration time 24 ≤

T ≤ 48 h and similar to attracting features that measure is not
sensitive to integration time.

One should note that this method is appropriate when LCS
features do not change much during the interrogation window,
in other words, the rate of change of the patterns should be
small in that time interval. Applying this method in cases where
the LCS change is large yields unpredictable correlation measures
which are not useful for measuring correlation between forecast-
and archive-based patterns. In addition, this approach is suitable
when overall similarity is important, but if one requires a measure
of distance between LCS features, other methods should be
considered. In next section, we quantify the distance between LCS
patterns by applying the modified Hausdorff method.

5.5. Modified Hausdorff distance

Hausdorff distance is an extension to the Euclidean metric [45].
This measure describes how far two subsets of a metric space
are from each other. The original definition of Hausdorff distance
requires the objects to be closed and bounded (satisfying the
axioms of metric space); however, LCSs are not closed features, so
we cannot apply the Hausdorff method for them.

The modified Hausdorff method is designed to overcome this
weakness [25]. By using this method one can calculate the distance
between LCS features.

We denote the Euclidean distance between two points α and β
as d (α, β) = ∥α − β∥. The distance between a single point (α)
and a set of points B = {β1, β2, . . . , βn} is defined as d (α,B) =

minβ∈B ∥α − β∥.
In the modified Hausdorff method, the distance between two

sets A = {α1, α2, . . . , αm} and B = {β1, β2, . . . , βn} is defined as

D = max (d (A,B) , d (B,A)) , (20)

where d (A,B) is

d (A,B) =
1
m


α∈A

d (α,B) . (21)
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Fig. 14. Measure of similarity of each forecast frame (attracting LCS) to the whole archive-based FTLE–LCS snapshots. Integration time (a) T = −24 h (b) T = −48 h and
T ∗

= 0, 6, 12 and 18 h.
This choice for defining the distance is based on two requirements:
sufficient discriminatory power and increasing distance measure
when two sets are more distant.

We have the hyperbolic LCSs as a set of discrete points from
criteria (6) and (8), so we can find the distance between features
of two frames and consider it as a measure of similarity; smaller
distance means better match between patterns.

Fig. 15 shows the distance between archive- and forecast-based
LCSs for integration times T = 24, 48 h and different T ∗s. This
figure shows how the patterns of forecast results diverge from
the true answers. Panels (a) and (b) of this figure show that
by increasing the integration time for attracting LCSs (backward
FTLE), the forecast results would be closer to the true features.

An interesting point of this figure is the abrupt change in the
curve corresponding to T ∗

= 6 h. A probable reason could be
an emerging error in the forecast velocity fields due to the input
data associated with that T ∗. This noticeable change is a result of
nonlinear and chaotic dynamics of atmospheric models in which
small changes of the input data could yield large differences at
future times. By increasing the integration time to −48 h, the
portion of archive data increases, so errors in the flow map are
suppressed, so as one observes that the LCS patterns associated
with (T ∗, T ) = (6 h,−48 h) have less distance to the archive-
based results. Results (not reported) show that the repelling
features are more vulnerable to the forecast input data. In contrast
to the attracting features, by increasing the integration time, they
become more distant from the archive-based LCSs.

6. Discussion

This study was motivated by recent observations suggesting
that LCSs govern the large-scale atmospheric motion of airborne
microorganisms [9,10]. Such observations have the potential
to aid in development of early warning systems for high risk
plant pathogens in the future. As a part of this comprehensive
system, UAVs are implemented to investigate the association
of atmospheric LCS and microbial populations. To optimize the
sampling of microbes at a fixed geographic location it is necessary
to predict the attracting and repelling LCSs, which requires the
use of wind forecast data. We use mesoscale forecast data over
North America provided by NOAA–NCEP via NAM-218 to predict
the passage of hyperbolic LCSs over the sampling location and
plan for collecting samples with UAVs. This is directly linked to
the NAM-218 timetable for online posting the forecast and archive
data.

A part of this study sought to compare the forecast-based
FTLE–LCSswith archive-based features to investigate the effective-
ness of this approach in choosing correct flight times. In addition,
quantifying the sensitivity of FTLE–LCSs predictions regarding the
involved parameters such as (T , T ∗) is the other goal.

Based on hyperbolicity of LCSs features, if the errors between
the forecast and archive wind fields satisfy stringent criteria, the
forecast LCS features mimic the archive-based ones with some
minor differences [18]. However, we showed that these criteria are
not met in practice. As a result, forecast- and archive-based LCS
features could show significant differences in time and space.

In this paper, we considered five methods for comparing the
forecast- and archive-based FTLE fields: (1) fixed spatial point with
temporal comparison, (2) fixed timewith spatial cross-correlation,
(3) spatiotemporal POD mode cross-correlations, (4) composite
correlation filter and (5) modified Hausdorff distance.

Results from the first method allowed us estimate the validity
of the forecast in the absence of the archive results. This may
be valuable for early warning systems, e.g., for vast crop fields,
where the exact passing times of LCSs are not important, but it is
important to know the overall shape and features of the LCSs and
the probability of passing colonies of microorganisms formed by
LCSs.

The second and third methods showed that attracting LCS
features are typically more robust to wind field forecast errors
compared to repelling structures. This point is significant since we
know that the attracting LCSs are the backbone ofmixing inmoving
fluids, governing important future events [16]. In the presence of
unavoidable velocity field errors, we expect the attracting LCSs to
be more reliable than repelling ones.

Although the cross correlation technique is a well-established
method, our results show that this approach of measuring FTLE
field similarity is very sensitive to nonlinear deformations of the
patterns, resulting in small coefficients for patterns that are similar
by visual perception. The fourth applied method addresses this
issue. Composite correlation filters capture the overall similarity
of compared patterns better than simple correlation techniques,
but they are not perfect since they need to be trained with enough
number of slow-varying input images, i.e., if the rate of change
of the FTLE–LCS features is small enough this approach works
well. Finally, the modified Hausdorff distance is considered as
an additional method for comparing LCS features. A combination
of these five methods could help us to reach a comprehensive
verdict about the effects of forecasting parameters on the quality
of forecast FTLE–LCSs.

The most challenging result of this study, which motivates
future research, is as follows: if we want to forecast LCSs, we must
take into account the uncertainty of the wind field forecasts and
the resulting uncertainty of the flow maps. By considering the
concept of uncertainty, we would expect probabilistic predictions
of the FTLE–LCS features which would be more consistent for real
applications (e.g., crop pest monitoring).
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Fig. 15. Modified Hausdorff distance between each frame of forecast- and archive-based LCSs. (a) integration time T = −24 h, (b) integration time T = −48 h and
T ∗

= 0, 6, 12 and 18 h.
Having reliable predictions of LCSs along with a network of
sampling centers which provide data about infected crop areas
(potential sources of inoculum) would contribute to an early
warning system. This study has shed some light on the effect of
key parameters on the quality of FTLE–LCS forecasts and hopefully
it will lead to robust applications of LCS-based management
strategies.
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